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ABSTRACT

The main idea of this report is to give an overview of the problems and difficulties
that arise in solving optimal control problems with switching points. A brief discussion
_of existing optimality conditions is given and a numerical approach for solving the multi-
point boundary value problems associated with the first-order necessary conditions of
optimal control is presented. Two real-life aerospace optimization problems are treated
explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in
presence of a dynamic pressure limit, and range maximization for a supersonic aircraft
flying in the vertical plane, also in presence of a dynamic pressure limit. In the second
problem singular control appears along arcs with active dynamic pressure limit, which,
in the context of optimal control, represents a first-order state inequality constraint. An
extension of the Generalized Legendre-Clebsch Condition to the case of singular control
along state/control constrained arcs is presented and is applied to the aircraft range
maximization problem stated above. A contribution to the field of Jacobi Necessary
Conditions is.made by giving a new proof for the non-optimality of conjugate paths in
the Accessory Minimum Problem. Because of its simple and :prlicit character the new
proof may provide the basis for an extension of Jacobi’s Necessary Condition to the case
of trajectories with interior point constraints. Finally, the result that touch points cannot
occur for first-order state inequality constraints is extended to the case of vector valued
control functions.
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Chapter 1

A “Road Map” for this Report




1.1 Overview

A particularly simple case of optimal control problems is given as follows:

min Q(x(ty), ty) (1.1)
subject to
2(1) = f(a(t), u(t), 1) (12)
z(to) = zo; to, zo fixed (1.3)
¥(a(ty),ty) = 0. (1.4)

Equations (1.2), (1.3), (1.4) describe the evolution of the underlying dynamical system,
its initial states, and the target set to which the states have to be driven at final time.
The "driving force” for the dynamical system is given by the control vector function of
time u(¢) appearing in the right-hand side of the state equations (1.2). Control u(t) can
be chosen freely, but the aim is, and this is the essence of optimal control, to find control
u(t) such that the cost criterion ® in (1.1) is minimized.

Many engineering problems of very different nature can be identified as optimal control
problems. In aerospace engineering applications equation (1.2) may typically descibe the
dynamics of helicopters, aircrafts, launch vehicles, or space probes. A common cost
criterion (1.1) is ®(z(ts),t;) = t; (minimum time problem: state z of the dynamical
system (1.2) has to be driven from initial state (1.3) to target set (1.4) such that final
time ¢y is minimized) or ®(z(ts),t5) = —m(t;) (minimum fuel problem: state z of the
dynamical system (1.2) has to be driven from initial state (1.3) to target set (1.4) such
that final mass m(#;) is maximized. In this case, of course, mass m has to be a component
of the state vector).

Another area for the application of optimal control is the chemical industry. Here the
dynamical system (1.2) may describe processes in a chemical plant. Typically, the control
components are energy input and/or input of catalyzers. Common objectives are usually
to minimize quantities such as the total energy consumption, the use of certain chemicals,
or the total output of undesired toxic byproducts.

More exotic areas for the application of optimal control are, for example, industrial
engineering and economics. Here the objectives are to organize a work force or a money
market such that some measure of productivity or profit is maximized. In these areas it is
usually very difficult to model the underlying dynamical system with sufficient precision
and consequently results are often of academic interest only.

Chapter 2 of this report gives an introduction to boundary value problems and shows
how they are associated with optimal control problems. Special emphasis is put on exis-
tence and uniqueness properties, as well as numerical well-posedness. A robust, easy-to-
use FORTRAN code is introduced, that has been used to generate all numerical results
that are presented in this report. Chapter 3 deals with the mathematical aspects of op-
timal control. First, the standard optimal control problem (1.1), (1.2), (1.3), (1.4) is
restated in Section 3.2 in mathematically more precise form (Definition 3.2.1). In a re-
mark following this definition it is explained how certain engineering requirements make it
necessary to allow minimization over all control vector functions of time u € (L;[to, ;])™,



where m is the dimension of u and L, denotes the well-known Hilbert space of all square
integrable functions on [to, s] in conjunction with the natural norm induced by the scalar

product < uy,ug >= \/ftf)’ uyug dt. In further remarks it is shown which types of seem-
ingly more general optimal control problems are covered by the simple problem formu-

lation in Definition 3.2.1 and which are not. Section 3.3 states the first-order necessary
conditions that a solution to problem (3.1), (3.2), (3.3), (3.4) has to satisfy. While Section
3.4 introduces the concept of singular control, Sections 3.5, 3.6, 3.7 cover important ex-
tensions of the standard problem, namely interior point constraints, control constraints,
and state constraints, respectively.

Closer examination shows that optimality conditions stated in Sections 3.3, 3.4, 3.9,
3.6, 3.7 lead to two-point boundary value problems in the simplest case and to multi-point
boundary value problems in general. These boundary value problems (BVPs) have to be
solved numerically. As this is a quite non-trivial task a whole Chapter (Chapter 2) is
devoted to the discussion of problems and difficulties*that may arise in solving BVPs.
An approach is introduced, namely the well-known Shooting Method, that reduces BVPs
to (usually highly non-linear) zero finding problems. Using simple examples it is indi-
cated that existence and uniqueness of a solution to a given BVP cannot be guaranteed.
Important for the numerical treatment of zero finding problems, the concept of condi-
tion number is discussed, which provides a measure for how well a problem is suited for
treatment on a digital computer with finite word length. Furthermore, some important
statements are made about the numerical evaluation of Jacobi matrices. A robust, but
simple and easy-to-use software package that has evolved out of the needs described in
Section 2.4 is described in Section 2.5. All numerical results stated in this report have
been obtained with this software.

In Chapter 4 an extension of the famous Goddard Problem is treated as a first example
for the application of optimal control to real-life aerospace problems. Here the problem is
to find the thrust history for a vertically ascending rocket such that maximum altitude is
attained. The extensions beyond the classical Goddard Problem are a dynamic pressure
constraint, which, in the context of optimal control, represents a first-order state inequality
constraint, and an isoperimetric constraint. Despite the simple structure of the problem
(only one control variable; this control variable appears only linearly in the equations
of motion), solutions are found to be of considerable complexity. Theoretically, four
different control logics are possible, namely zero thrust, full thrust, singular thrust, and
arcs of active dynamic pressure limit. Upon varying the maximum dynamic pressure
limit and the prescribed final time, nine different switching structures are obtained. All
four theoretically possible control logics are found to be active in various sequences. The
complexity of the solutions provides numerous opportunities for improving or deteriorating
the numerical solvability by formulating different zero finding problems associated with
the same BVP.

Chapter 5 deals with range optimization for a high performance fighter aircraft flying
in the vertical plane. The controls are load factor n and throttle , with  only appearing
linearly in the equations of motion. Constraints are explicit limits on the absolute values
of throttle and load factor (control constraints) and an upper bound on the dynamic
pressure (first-order state inequality constraint). Theoretically, eleven different control
logics are possible. The explicit derivation of these control logics along with the higher-



order convexity tests ("Kelley Condition”, or ”Generalized Legendre-Clebch Condition™)
for the singular control cases is presented in Appendix A.

In the case of active state or control constraints the theoretical background for these
higher-order convexity tests is not available in the literature. In Chapter 6 a generalized
definition of singular control is presented. Based on a work by Goh [11] an extension
of the Generalized Legendre-Clebsch Condition to singular control along state/control
constrained arcs is derived (Theorem 6.6.2). The results obtained here are applied in
Section A.5.

In Chapter 7 a theoretical result on the existence of touch points for first-order state
inequality constraints is presented. The well-known first-order necessary conditions asso-
ciated with the assumed switching structure
(i) unconstrained arc
(ii) state contraint active at a single point
(iii) unconstrained arc
are used to derive new concise conditions. In most cases of practical interest these condi-
tions exclude the existence of touch points. For practical applications results of this type
are invaluable, as they can significantly reduce the time consuming and frustrating search
for the correct switching structure.

In Chapter 8 finally the problem of conjugate point testing is addressed. In 1965
Breakwell & Ho [3] showed that the existence of a conjugate point for a linear quadratic
optimal control problem with zero initial states and homogeneous final conditions implies
that the trivial solution (identically zero) cannot furnish a relative minimum. Through
the concept of the Accessory Minimum Problem this implies for general non-linear optimal
control problems that a solution candidate with a conjugate point cannot be optimal. In
Chapter 8 the proof given by Breakwell & Ho is modified such that the trajectory that
furnishes negative cost to the AMP is constructed explicitly. The explicit character of
the proof makes it possible to extend results immediately to the case where the reference
solution has discontinuities at fixed points in time. For the future it is hoped that a Jacobi
testing procedure can also be developed for trajectories with corners of more general type.
For covenience, a derivation of the AMP for problems with interior point constraints of
the type described in Section 3.5 is presented in Appendix B. As a useful byproduct this
derivation also yields the first-order necessary conditions associated with such trajectories.



Chapter 2

Boundary Value Problems in
Optimal Control



Chapter Overview
The concepts of two-point boundary value problems and multi-point boundary value prob-
lems are introduced. It is shown how these problems arise from applying the first-order
necessary conditions of optomal control. Existence and uniqueness questions are addressed
as well as questions of numerical well-posedness. A robust, easy-to-use software package
for solving boundary value problems is introduced.

2.1 Introduction

In practical applications it is common that about 80 % of the total time spent on solving an
optimal control problem is spent on the numerical treatment of boundary value problems
(BVPs). On a simple example it is demonstrated that existence and uniqueness of the
solution of a BVP can not be guaranteed. In fact, for the practically important non-
linear case, there are hardly any theoretical results that can answer these questions a
priori without actually trying to solve the BVP by running "numerical experiments”.
Practically, this is a very unpleasant feature. Even if a given optimal control problem is
known to have a solution, the switching structure, i.e. the sequence of different control
logics that actually solves the problem is not known in advance and has to be found by
a numerical trial and error approach. Depending on the assumed switching structure
different BVPs are obtained. If a numerical solution of such a BVP can be found, then
fine. But if the numerical search for a solution fails it can not immediately be concluded
that a solution to the BVP does not exist. Hence one is stuck with the question whether
to continue the search for a solution of the assumed structure (which may not exist) or
whether to give up the present effort and start searching for a solution with a different
structure. Naturally, in this situation it is very important that the applied zero-finding
software actually does find a solution if there is a solution. In this context the condition
number of a zero-finding problem plays an important role.

2.2 Theoretical Background for Boundary Value Problems
(BVPs)

A two-point BVP is a problem of the following form:

Definition 2.2.1 (Two-Point Boundary Value Problem (TPBVP)) Given is an or-
dinary differential equation (ODE) of the form

(1) = (=(1)) (2.1)

on the time interval [0, 1], where 2(t) € R™ and

i R’n — RTL 1
LI

Find a solution of this ODE such that n given conditions

h(2(0),2(1)) =0



are satisfied, where
R2n - Rn 1
h { (=0),2(1) — h(=(0),2(1)) €€

The more general case of a multi-point boundary value problem can be stated as follows:

Definition 2.2.2 (Multi-Point Boundary Value Problem (MPBVP)) Given is a
piecewise defined ODE of the form

(1) = fi(2(1)) on [ticyyti), i =1, k41 (2.2)

with to = 0, try1 = 1; tiy1 > ti Vi; 2(t) € R" and

. Rn — R'ﬂ. 1
fp{z — f(2) eC.

Find a solution of this ODE such that n + k given conditions
h(z(0),2(t1), ..., 2(tk), (1), t1, s te) = 0
are satisfied, where

" { Rk+2)n+k —» Rntk

(2(0), 2(11), ooy 2(tk) 2(1), by s ti) = B (2(0), 2(t1), crey 2(th), (1) 1, oo i) €c.

Figures 2.1 and 2.2 give a schematic representation of two-point and multi-point BVPs,
respectively.

Let us now have a closer look at the TPBVP. If we pick an arbitrary set of initial states
7o € R™, then the solution to the initial value problem 2 = f(z), 2(0) = 20, if it exists,
is determined uniquely as long as the right-hand side f(z) of the differential equations
is Lipshitz bounded. Furthermore, if f € C! then the final states z(1) vary smoothly
with the initial states zo (see Lee & Markus [24]). Now it is clear that a TPBVP reduces
to the problem of picking the right initial states z(0) € R” such that the n conditions
h(2(0), 2(1)) = 0 are satisfied.

For MPBVPs the extensions are only of technical nature. In the case of the problem
stated in Definition 2.2.2 the independent parameters that can be chosen freely are initial
states 2(0) and the location of the switching times ty,...,%. For both, two-point and
multi-point BVPs this yields consistent zero-finding problems (i.e. number of conditions
is equal to number of independent variables). Because of the smooth dependence of
conditions A = 0 on the free variables, a Newton Method can be applied to solve these
zero-finding problems. It is interesting to note that the zero-finding problem associated
with a given BVP is not determined uniquely. In case of the MPBVP given in Definition
2.2.2 it is clear that instead of using z(0),1, ..., tx as independent parameters to represent
the solution one could also choose 2(0), (1 — t0),, ..., (tk4+1 — tx). Or, in order to make
things more complicated, one could choose some point ¢; as a starting point and obtain the

7



h(z(0),2(1)) = 0

T

z=f(2)

r i’

Figure 2.1: Two-Point Boundary Value Problem

trajectory by integrating backward and forward. In this case the independent variables
can be chosen as z(t;),t,...,tx. Mathematically it does not make any difference how
a trajectory is represented. However, numerically one may benefit considerably from a
change in parameters. Before discussing these points in more detail a simple example is

given in the next Section to answer questions about existence and uniqueness of solutions
to BVPs.

2.3 Existence and Uniqueness of Solutions to BVPs

Let us consider the simple physical example of shooting at an (empty) beer bottle with a
gun (see Figure 2.3). It is easily verified that (neglecting atmospheric drag) this problem
can be discribed by the following BVP

g—f = (vcosyg)At z(0) =0
& = (vsinyo—gr)At  y(0)=0 (2.3)
& < o 2(1) =25 > 0 '
dt _ y(1)=0

Here g is the gravitational acceleration, v is the initial velocity of the bullet, 7o is its
initial flight path angle, and At is the total time that it takes the bullet to travel from
starting point (z,y) = (0,0) to the target point (z,y) = (zy,0). In order to normalize
the time interval to [0,1] the independent variable, time t, is replaced by some scaled



B (2(0), 2(t1), s 2(th), 2(1), tr, s t) = 0

|
i=fiz) | &= fi(2) :
|

]
0 t ta

N

Figure 2.2: Multi-Point Boundary Value Problem

time-like variable 7. From physics it is immediately clear that, since vg is fixed, there is
an Tyaz > 0 such that (see Figure 2.4)

problem 2.3 has no solution if 5 > Zmqaz,

problem 2.3 has exactly one solution if f = Zmaz,

problem 2.3 has exactly two solutions if z5 < Tmqz-

Hence we see that even the numerical value of the prescribed boundary conditions
may have a strong influence on existence and uniqueness of the solution. In fact, for
the practically important case of non-linear BVPs there are hardly any theorems that
can give a priori answers to existence and uniqueness questions. In our simple example
only physical intuition can lead to an immediate answer without actually solving the BVP
numerically. It should be noted that physical intuition usually cannot be applied to BVPs
associated with optimal control problems. Even if the behavior of the plant is well-known
and understood, the evolution of the costates is usually quite unpredictable and one has
to rely exclusively on information obtained from running numerical experiments.

2.4 Numerical Well-Posedness

It is clear that different zero-finding problems can be formulated in association with
the same given BVP. Instead of integrating forward one could integrate the trajectory
backward, or one could even start the integration in the interior of the time interval and
obtain the trajectory through successive forward and backward integration. Analytically,



zs

Figure 2.3: A Physical Example for a Boundary Value Problem

the associated zero-finding problems are usually somewhat equivalent, but numerically
an intelligent choice of the parameters to describe a trajectory and the conditions to
determine these parameters can make all the difference between not getting a result at
all and getting a result pretty easily. Smooth zero-finding problems are usually solved by
some kind of Newton Method, which, in each iteration, solves a linear system of equations.
Hence it is natural to first investigate the scalar equation

az+b=0; ac R, beR; qa,bgiven. (2.4)

A digital computer with finite word length will first add round-off errors to the input
variables @ and b. Then these round-off errors will propagate according to the type of
operation that has to be performed on a and b to compute z, and finally another round-
off error is added to the result z. From these considerations it becomes clear that the
problem is best suited for numerical treatment if a is of order unity, i.e. |a] = 1. If |q]
is very small (|a] << 1) then even small perturbations in a (caused by round-off errors)
imply large changes in the solution z. On the other hand, if |a| is very large (|a] >> 1)
then the magnitude of the solution is very small and even small perturbations in form of
round-off errors added to the solution z may corrupt the relative precision of the result
considerably. The generalization of this concept from scalar to vector equations is quite
straightforward and one comes to the conclusion that || A || close to unity is desirable for
problems of the form

Az +b=0; A€ R"™, beR" (2.5)

10



o
A two solutions 2 .

o no solution
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=N

15

=

]

]

' - T
0

Zmaz

Figure 2.4: Structure of Solution for Example Problem

However, careful examination of the non-scalar case shows that there is another quantity,
namely the so-called condition of A defined by cond(A4) =|| A || || A=' || which is of
fundamental importance for the numerical solution of linear systems of equations. We
have the following theorem (see for example Stoer & Bulirsch [43]):

Theorem 2.4.1 Let z € R™ be a solution to the linear system of equations Az = b with
A€ R™, be R" given. If z + éz is a solution to (A + §A)(z + bz) = b+ éb for given
§A € R™", 6b € R™, then we have

Ty (mat A ) <haT Al (Ll L) )

This is true for any norm on R™ (the space in which z and b live). The matriz norm
is understood as the natural norm induced by the norm chosen for R", ie. || A ||=

Arx
SUP||z|=1 ]
Proor: Assume for given A, b we have z such that Az = b. Then, for given 6 A, éb we
have

(A+6A)(z +éz)=b+6b
Az + Abz + §Az + §Abz = b+ 6b
Abz + §Abz = §b— b Ax
| Aéz + 6Aéz || = || 6b— 6 Az ||

11



| Adz || — |} 6Adz | <[[ b | + || 6A [ = |l

Also
lézll = || A7 Asa |
< A7) Ase |
éa |
= || A6z || > o2l
I ez >
Using this we get
bz
el ysaneen<non+naanys)
AT
1
x| (rgmrr= 1164 N) < H6b 1+ 641 ) =
621 (e | ||
bx A7? _
L=l (= neania ) <o ! ””+||A1nu«sA||
u«szn( ||6A||||A‘1||||A|) AV A2 ),
- FlAT g sA
Tzl TAT o1 e '
Lo (1 sy ag LAY ams g D8I gy 0 L84
A~ A <l A Al +——+ || A~ A
ren G nnan i) svartpnap bk ac g L

Lz 1 Yy (Lol ety
1- || A7t A <|lA A + :
Tzq U AT A ) < HAT AT =+ ra

g.e.d.
Essentially this theorem states that for small perturbations 6 € R", §4 € R™",

cond(A) :=[| AT ||| A |

is an amplification factor by which relative errors in the data A, b may influence the
relative precision of the result z even if all operations are performed with total precision.
This property can be best demonstrated by the simple example problem of finding the
intersection point between two straight lines in the horizontal plane. Let the two lines
be given by the equations n?z = b, and ngz = b, where n; € R?, n, € R?, b, € R,

*1 | ¢ R? is determined by the linear 2 x 2

b, € R. Then the intersection point z = .
2

T b
system of equations [ ZT ] T = [ bl . It is clear that without loss of generality the
2

normal vectors ny, nz can be assumed normalized, i.e. || n; ||=|| n2 ||= 1, so that matrix

T T
n}w has norm close to unity. Then cond(A) is large if and only if matrix an has a
ny n2

singular value close to zero, i.e. if n; and n; are close to parallel. Applying Theorem 2.4.1,
this implies that it is numerically difficult to calculate the intersection point between two
straight lines in R? if and only if these two lines are close to parallel. This result is of
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no surprise. Of course we expect difficulties in calculating the intersection point between
two nearly parallel lines and it is immediately clear that the obtained solution may be
worthless if the normal directions ny, ny are corrupted even with only very small errors.

To summarize this point we note that for a given BVP the associated zero-finding
problem

F(z)=0,
R? — R?
F :{ : — F(z)

should be formulated such that both, norm and condition of the Jacobian matrix J = %%

evaluated at the solution point z* are "as close as possible” to unity. To be more specific,
a norm or condition in the order of 100 is still pretty much o.k. on a computer with
double precision accuracy (16 decimal digits mantissa). When norm and/or condition
go close to %, where € = machine precision, results in each Newton iteration step are
governed mainly by round-off errors and are becoming useless. Both, norm and condition
of the Jacobian associated with the problem F(z) = 0 can be influenced also by scaling
parameters z and/or conditions F. Even though the pure Newton Method is invariant
under scaling, the (usually applied) Relaxed Newton Method is not and scaling has an
effect beyond the amplification of round-off errors (see for example Stoer & Bulirsch (43]
or Ortega & Rheinboldt [35]).

There are numerous other criteria to examine when setting up a numerically well-posed
zero-finding problem associated with a given BVP. In general, BVPs are full of surprises
and it is probably not possible to give a reasonably complete list of what might go wrong.
The following two practical examples are given in order to demonstrate somewhat typical
problems that may occur and to show how these problems can be solved.

For the first example let us have a look at the rocket ascent problem treated in Chap-
ter 4. As described in Section 4.2 the rocket model involves only a single control, namely
thrust 7. This control appears only linearly in the equations of motion and is subject to
fixed bounds 0 < T < Tyrqez. For final time ¢ prescribed between (roughly) 0.13 and 0.15
it is found that the solution is of the structure
full thrust — singular thrust — full thrust — zero thrust.

Figure 2.5 gives a schematic representation of the BVP associated with this switching
structure and indicates two different zero-finding problems that may be associated with
this BVP, designated type 1 and type 2. The first zero-finding problem is obtained by
integrating from initial time O to switching time t;, then to switching time ¢, and so on
until final time t; is reached. The set of parameters that makes this procedure unique
is given by the initial states and costates 7(0), v(0), m(0), A-(0), A4(0), A (0), and the
lengths of the integration intervals Aty, Aty, Ats, Aty. (Of course parameters r(0), v(0),
m(0) can be eliminated directly by using the conditions numbered 1), 2), 3) in Figure
2.5, but this does not change the nature and the severity of the problem that is described
below). If the rocket ascent problem is solved successively for different values of pre-
scribed final time ¢y, it turns out that if the prescribed final time ¢¢ approaches 0.15 from
below, the length of the second full thrust arc [t3, t3] goes to zero and ultimately vanishes
completely, so that switching structure

full thrust — singular thrust — full thrust — zero thrust
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‘ 7) Ay =1

8) Ay = 0.

9)m = 0.6

10) L, A =015

singular

full

Atl At?

zero-finding problem type 1
10 parameters: h(0), v(0), m(0), An(0), Ay(
10 conditions: 1), 2), 3), 4), 5), 6), 7), 8), 9

0), An(0), Aty, Aty, Ats, Aty
), 10)

zero-finding problem type 2
8 parameters: h(f2), v(t2), m(t2), A,(t2), Aty, Ata, Atz, Aty
8 conditions: 1), 2), 3), 6), 7), 8), 9), 10)

Figure 2.5: Schematic Representation of Boundary Value Problem
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blends into switching structure

full thrust — singular thrust — zero thrust

for t; > 0.15. In this process the numerical solution of the zero-finding problem of type
1 fails if Atz, the length of the second full thrust arc becomes less than 1073, Switching
times t, and t3 are basically determined by the condition that the switching function be
sero. For the numerical calculation of the Jacobian J associated with the zero-finding
problem type 1, small perturbations have to be applied in the initial states r(0), v(0),
m(0), A-(0), A»(0), Ar(0) as well as the lengths of the arcs Aty, Aty, Atz, Aty. As usual,
partial derivatives are then approximated by quotients of finite differences. This proce-
dure is based on the assumption that finite differences and partial derivatives don’t differ
too much. Of course this is true as long as the numerical offset for the finite difference
calculations are "small enough”. But what is small enough may vary considerably from
problem to problem. In our example where the length of the second full thrust arc [t2, t3)
is of order 103 the magnitude of switching function § is at most in the order 1076 on
[ta,13] (as § = § =0att,and § = 0 at t3) and a perturbation applied at initial time
can be called small only if it yields a perturbation in S at times t3, t3 that is ”small”
compared to 106, the order of magnitude of S on [t2,13]- But the effect of perturbations
at initial time that are small enough to satisfy this criterion are likely to be dominated
by round-off errors that build up during the integration. Hence the Jacobian matrix can
not be calculated with sufficient precision and the Newton Method must fail.

It is easy to visualize that the problem above can be avoided if the integration of the
trajectory is started at switching time ¢, rather than at initial time t9 = 0 (zero-finding
problem of type 2 in Figure 2.5). In this case perturbations in the parameters (r(t2),
v(ty), m(t2), Ar(t2), Au(t2), Am(t2), At1, Ata, Ats, Aty) have a direct effect on conditions
S|, = 0, S|, = 0, Sli, = 0 and can be chosen reasonably large. In the zero-finding
problem of type 1 perturbations applied at initial time are going through an amplification
phase along the integration on time interval [0, t] before effects on the above conditions
are measured.

Another example for how different zero-finding problems associated with the same
BVP can have completely different numerical solvability qualities is provided by the air-
craft range optimization problem treated in Chapter 5. As described in Sections 5.2 and
5.4 the aircraft model involves two controls, namely throttle § and load factor n. Throttle
§ appears only linearly in the equations of motion and both controls, § and n, are subject
to fixed bounds 0 < 6 < 1, —fpmaz < 7 < +7Nmay. Additionally, a dynamic pressure limit
which, in the context of optimal control, represents a first-order state inequality constraint
has to be satisfied by the trajectories. Several different switching structures are found to
solve the problem upon varying the prescribed value of oz while keeping the prescribed
initial and final states fixed. A schematic representation of one of the switching structures
(denoted by (S6)) is given in Figure 5.4. The switching structure consists of five arcs.
With respect to the dynamic pressure limit Co := ¢ — ¢maz <0 the switching structure is
not active — active — active — active — not active
(and this is the only property of switching structure (S6) that is important for this Sec-
tion). The most obvious zero-finding problem associated with this BVP is to search
numerical values of the 14 parameters E(0), h(0), (0), 2(0), A£(0), An(0), A (0), Az(0),
lo, Aty, Aty, Ats, Aty, Aty such that the 14 conditions numbered 1), ..., 14) in Figure
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5.4 are satisfied. But it turns out that it is numerically nearly impossible to solve the
problem this way. Small perturbations in initial states, initial costates, or the lenth of the
time interval At) lead to (usually slightly bigger) perturbations in the states at time i,
the beginning of the active-state-constraint phase. Along state constrained arcs (intervals
[t1,12], [t2,t3], [t3,14]) the differential equations are such that the dynamic pressure is
identically constant, so that ¢ — gmaz = Aq on [ty,14], where Ag = (9 = gmaz)l;,- Loosely
speaking, in order to stay on a higher dynamic pressure limit over some extended period
of time either the thrust has to be increased or the load factor has to be decreased. In
fact, even small positive increments Aq make it impossible for the aircraft to stay on the
dynamic pressure limit all along time interval [t,,24]. Numerically it turns out that load
factor n is reduced along [t;,14] until n = 0 is reached. After that point either the calcu-
lation of n stops with a negative square root or the equation % (¢ = gmaz) = 0 that has to
be satisfied along arcs with active dynamic pressure limit is no longer fulfilled. This means
that the calculation of the Jacobian is either impossible or leads to inconsistent results
(depending on how the software to integrate the trajectory is set up). Again it is easy to
see that all these difficulties can be avoided if the integration is started at a time where
the dynamic pressure constraint is active, i.e. somewhere along the time interval [t;,4].
The most preferrable starting point for the integration is switching time t, (or ¢3). At
this time conditions 6), 8), 9) in Figure 2.5 can be used to reduce the free parameters to
the set h(tz), ¥(t2), z(t2), Ae(t2), Az(t2), lo, Aty, Aty, Ats, Aty, Ats. The conditions left
to satisfy are given by equations 1), 2), 3), 4), 5), 7), 10), 11), 12), 13), 14). In this setup
the characteristic properties S = 0 along the singular arc [t,, 3], as well as ¢ — Gmaz =0
along the state constrained arcs [t1,15], [t2,13], [t3,14] are always satisfied irrespective of
the perturbations that are applied in computing the Jacobian matrix.

2.5 A Robust, East-To-Use Software Package

In this Section we describe the software package for solving multi-point BVPs that has
been used to generate all numerical results that are presented in this report. This package
has evolved out of the needs that arise in the practical work with optimal control problems.
The heart of the software is subroutine ZSCNT, an IMSL 9.2 implementation of Newton’s
Method for solving non-linear zero-finding problems (see IMSL 9.2 User’s Manual [15]).
The main program, into which the user has to make only a few entries, like the number
of equations to solve, is also provided in some standard form. This main program calls
the Newton Method and the Newton Method in return calls subroutine TRAJEC in an
iterative way (see Figure 2.6). For given parameter vector z (= input XIN in TRAJEC)
TRAJEC computes the value of the non-linear vector-valued function F(z) (= output
YOUT in TRAJEC) that has to be made zero. This subroutine has to be provided
completely by the user.

It is not claimed that this software package incorporates any new numerical theories.
The advantages of this software come purely from its user friendliness. In practice it is
usually necessary to write some program that can integrate the trajectory for a given
initial state/costate vector. This should always be done in order to test the right-hand
side of the differential equations (e.g. for constancy of the Hamiltonian) but may also
be required to find a starting trajectory for homotopy runs. Once such a program is
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initialize XIN

XIN

ZSCNT TRAJEC

YQu

solution XIN

Figure 2.6: Flow Chart for Boundary Value Problem Solver

written it is trivial to transform it into a subroutine and to provide the input/output
interface as required in TRAJEC. Clearly, if the same subroutine that is used for software
test runs can be immediately embedded into the BVP solver, then an obvious source for
programming errors is eliminated.

Another advantage of the described program architecture (see Figure 2.6) is that the
user has complete control over the parameters used to characterize the solution of a given
BVP. All parameters have to be selected by the user and all conditions (to determine these
parameters) have to be programmed explicitly in TRAJEC. Also, no automatic scaling is
provided by the software package. The aim is to give the user as much control as possible.
By ”playing around” with scaling factors and by trying different zero-finding problems
for a given BVP the user is able to get a good feeling for the BVP. In case of troubles it is
usually easy to clearly identify where the difficulties are coming from. In programs with a
lot of automatic features this may be very difficult. Besides, the problems and difficulties
arising in the practical work with optimal control problems are so different in nature that
it is probably impossible to make automatic procedures fool-proof. The software package
described here leaves it up to the user to do a good or bad job in fine-tuning the numerical
procedure. For the experienced user this feature is quite welcome. For the unexperienced
user it provides the opportunity of learning something and of growing with the software.
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Chapter 3

Existing Optimality Conditions

18



Chapter Overview
A standard type optimal control problem is defined. Existing optimality conditions are
stated for this standard problem. Extensions to the practically important cases of singular
control, interior point constraints, control constraints, and state constraints are treated.
Finally, the existence of solutions and Jacobi Testing is addressed.

3.1 Introduction

In this Chapter it is intended to give an overview of existing optimality conditions for a
reasonably large class of optimal control problems. In the first Section of this Chapter
a very simple reference optimal control problem is defined. Section 2 states necessary
conditions for optimality and points out a few general difficulties associated with optimal
control problems. In Sections 3, 4, and 5 a few complications, such as control constraints,
interior point constraints, and state constraints are introduced to the simple reference
problem. Finally, Section 6 addresses the question of existence of a solution. Throughout
this Chapter proofs are avoided in favor of giving only the basic idea. For details numerous
references are provided in this Chapter.

3.2 Standard Optimal Control Problem

In this Section we consider the following simple optimization problem

Definition 3.2.1 (Standard Problem)

min d(x , 3.
(e (z(tg),ts) (3.1)

subject to the equations of motion

(1) = f(z(1),u(?)) (3.2)

the initial conditions
z(to) = zo; to, To fized (3.3)
and the boundary conditions
U(z(ty),tf) =0 (3.4)
where u(t) € R™; z(t) € R*; @ : R**! = R; f: R*™ R ¥R - RF k< n.

Remarks:
(i) It is important to allow minimization of the cost function (3.1) over a reasonably
large class of control functions u. For engineering purposes we want this class of control
functions to include at least the set of all piecewise continuous functions. Moreover, we
want the metric defined on the principle set of functions to be such that two continuous
functions f and g have distance zero (“are the same”) if and only if f(t) = g(t) vt € [to, ty]-
Besides these engineering requirements an important issue from the mathematical point
of view is completeness of the set of control functions with respect to the selected metric.
(Note that for instance, the minimization problem of finding the smallest number in the
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set X = {z € R|0 < £ < 1} does not have a solution because the set X is not complete.
To avoid difficulties of this kind we want the set of admissible controls to be complete).
Loosely speaking, the set Lj[tg,ts] in conjunction with the norm || f ||»= tto’ f* dt for
f € Lalto,ts] can be defined as the completion of the set of all piecewise continuous
functions on [to,ts] (completion w.r.t. the metric on Ly as implied by the norm || - [|2),
and hence satisfies all desired qualifications. For all practical purposes it is possible to
view PWClto, 1] (the set of all piecewise continuous functions on [to,%s]) as the set of
allowed control functions. This makes things easier to visualize. When this engineering
approach leads to difficulties it will be necessary to recall that we are really minimizing
over all control functions in Ls[to, ty].

(ii) Frequently, optimal control problems are stated in terms of a cost function

7= platty) )+ [ (o), u(v)d

Problems of this form are not more general than the one stated in Definition 3.2.1. By
introducing the additional state y as solution of

= L(z,u), y(to) =0

the above cost function takes the form

J=p(x(ty)ty) +y(ts)

and hence is of the general form given in Definition 3.2.1.
(iii) Frequently, optimal control problems are stated with an explicit time dependence of
the right-hand side of the state equations

2(t) = f(a(t), u(t), 1).
This explicit time dependence can be transformed away by introducing the additional
state y as solution of the initial value problem

i=1

y(to) = to.
Then, obviously, the right-hand side of the state equations is only a function of states
(z,y) and controls u,

T = f(I,u,y)

(iv) It is customary to consider initial conditions only of the simple form (3.3). It is not
possible to obtain such simple initial conditions by applying some transformation on the
general problem with initial/boundary conditions of the form, say

@—(z(to)’z(tf)’tovtf) =0 (3.5)

Hence, considering only initial/boundary conditions of the form (3.3), (3.4) poses a non-
trivial restriction on the generality of the standard optimal control problem. On the
other hand, optimality conditions (and methods of deriving them) associated with the
more general initial/boundary conditions (3.5) are a quite straightforward generalization
of the optimality conditions (and methods of deriving them) associated with the simple
conditions (3.3), (3.4).

20



3.3 Optimality Conditions for the Standard Problem

Assume the control function u*(t), ¢ € [to, ], furnishes a solution to the standard problem
given in Definition 3.2.1. Then necessary conditions for optimality are obtained from the
following formalism (the theory also guarantees that these optimality conditions have a
solution if the optimal control problem has a solution):

define the variational-Hamiltonian

H(z, A u) = 2T f(z,u) (3.6)

and define the Lagrange multiplier vector A as solution of the final value problem

oH

h=-5 (3.7)
0® oV

= g+ By

Then, at (almost) every instant of time, the optimal control u* is such that the Hamilto-
nian (3.6) is minimized (Minimum Principle):

(3.8)

u*(t) = arguréllitnm H(z(1),A(t), u). (3.9)

An optimality condition associated with final time ¢; is given by

el — .10
(‘)tf tv 8tf (3 )

H,, +

In an engineering approach these conditions can be obtained from setting the first variation
of the augmented cost function equal zero (see Appendix B). A more rigorous, yet very
geometrical and illustrative approach is presented in Leitmann [25]. Leitmann extends
trajectories into an n + 1-dimensional space (n state dimension, 1 cost dimension). Then
he introduces limiting surfaces defined as the set of all points in the n+ 1-dimensional space
associated with trajectories that connect arbitrary, admissible initial and final states, with
the cost at initial time chosen such that each trajectory ends up with the same fixed final
cost. Finally, the Lagrange multipliers introduced above are identified as (part of) the
normal vector on these limiting surfaces.

Another illustrative, yet mathematically very clean approach is given in Lee & Markus
[24]. For the minimum time problem Lee & Markus investigate the evolution of the set
of attainability K (). This is the set of all possible states that can be reached within
time ¢, starting at a fixed point z¢ at time 9. Optimality conditions are derived from the
requirement that for all times ¢ > ?o the optimal state z*(t) has to be a boundary point
of the set of attainability K(%).

Finally, it should be mentioned that the optimal control formalism can be derived also
in very abstract functional analysis approach (see Neustadt [33]). Most theorems and
proofs still have some geometrical interpretation, but often this is hard to see because
one is generally working in infinite-dimensional spaces. In some cases the results obtained
from the functional analysis approach lead to a significant strengthening of theorems
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derived in a classical way (e.g. in [31] supplementary optimality conditions on multiplier
4 associated with state inequality constraints can be derived by applying results obtained
from the general multiplier theory).

It should be noted also that at each instant of time where the Hamiltonian is a suffi-
ciently smooth function of control vector u, the Minimum Principle (3.9) implies

OH

5o = 0 (3.11)
0*H
507 > 0. (3.12)

Condition (3.12) is called the Legendre-Clebsch Condition or Convexity Condition.

3.4 Singular Control

As stated in the previous Section, at each instant of time ¢, the optimal control u* has to
satisfy (Minimum Principle)

u™(t) = argurélIi{I}n H(z(t),A(t),u) (3.13)

It is possible that this condition does not determine w* uniquely. Typically, and for
practical applications most important, this can happen if some component u; of control
vector u appears only linearly in the right-hand side f(z,u) of the state equations (3.2)
such that %z}ﬂl is independent of all controls u and is a function of states z only. If, at

some instant of time, states z and costates A are such that S(z, ) := % is zero, i.e.
7

S5=0 (3.14)

then the Hamiltonian is independent of u; at that instant of time and the Minimum
Principle (3.13) does not furnish any information on how to choose u;. It is clear that
pointwise occurrence of this situation can be ignored. This is true as we can choose any
arbitrary control value u; at an isolated point in time without changing the evolution of
states. If we are willing to think in terms of L,-functions (rather than piecewise continuous
functions) as admissible control functions then we can generalize this statement by saying
that arbitrary control values on a set of measure zero along the time axis do not have
any effect on the evolution of the states. Hence, we only have to investigate the case
where S is zero on a set of positive measure along the time axis. After replacing all
control components u;, i # j, by functions of states z and costates A as determined by
the Minimum Principle (3.13), § is an absolutely continuous function and hence § being
zero on a set of measure greater than zero implies that there is a non-trivial time interval
[t1,22) C [to, 1], t2 > t;, such that § = 0 on [t;,t,]. This is called a singular control case
(note that the Hessian matrix %’5{— is singular on [t1,1,]). In this case control component
u; is determined implicitly by condition (3.14). Explicit information on u; can be obtained
by differentiating identity (3.14) until the undetermined control u; appears explicitly. In
[19] it is shown that § has to be differentiated an even number of times, say 2q times for
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some ¢ € N, until control u; appears explicitly. Then q is called the order of the singular
control.

Hence, on an arc [ty, 23], t; > t;, with singular control u;, j € {1, ..., m} of order ¢ we
have the following necessary conditions:

{ui|t # 7} = argurenritnm H (3.15)
S5(z, ’\)|zl =0
ds
il =
A ),1 0
(3.16)
d¥-1g§
t1
d*s
W(m,/\,uj)z()on [t1,12] (3.17)
where o
= 1
S Ou; (3.18)

with all controls u;, 7 # j expressed in terms of z, A as obtained from (3.15). A more
general definition of singular control which applies also for non-linearly appearing controls,
as well as for arcs with active control and/or state constraints is given in Section 6.4.

In the 1960’s singular control was found to play an important role in numerous en-
gineering problems of great practical interest (e.g. the atmospheric ascent of the Saturn
V rocket). This prompted intense research in supplementary optimality conditions for
singular control. Note that along singular arcs the classical Legendre-Clebsch condition

2
%UIQI >0 (3.19)

is satisfied for the singular control component u; only in the weak form (i.e. with equality).
In 1964 H. J. Kelley [17] was the first to state second order necessary conditions for this
type of control. In the following years many authors e.g. Kelley & Kopp & Moyer [18],
[19], Robbins [36], Goh [11], Krener [20]*have extended Kelley’s idea to derive what is
now known as the Generalized Legendre-Clebsch condition. In compact form it can be

stated as ,
o | d9 {OH
1Y ] —
=D'g [dtzq (auJ)] >0 (3.20)

In Chapter 6, Goh’s Necessary Condition, which implies (3.20), is extended to the case of
singular control along state/control constrained arcs.

23



3.5 Interior Point Conditions

Let us introduce the additional condition
N (a(t7),2(tf),t1) =0, N :R*™! L R? (3.21)

to the standard optimal control problem stated in Definition 3.2.1. With conditions
of this form it is possible to formulate explicit conditions on the states and/or prescribe
discontinuous jumps in states at points in the interior of the trajectory. A typical example
is the staging of a rocket, where the mass changes discontinuously at staging time, say,
t;. The optimality conditions associated with constraint (3.21) can be easily derived
by investigating the first variation of the augmented cost function as demonstrated in
Appendix B. For convenience the results are restated below (superscripts —, + denote
evaluation just before ¢; and just after ¢, respectively):

N (2(),2(t),t1) =0, N :R¥1 _ R? (3.22)
N N
(IT:TJ:,; + A+T) dz b+ (IT;T - ,\+T) dz,~ + (zTng - HY 4 H—> dt; =0 (3.23)
for all [dz,%,dz1™,dt] € R*T"*! with
ON . . ON . _ 9N,
61‘1+de + mdﬁl + a_tldtl =0 (3.24)

The constant multiplier vector { € R” compensates for the p degrees of freedom lost
through condition N = 0.

In the practically important case where all states are continuous at ¢; and where time
ty is free, i.e.

N(il)(tl)) =0
the optimality conditions simplify to
N(z(t1)) =0 (3.25)
ON
M= 3T T 2
e (3.26)
Ht-H™ =0. (3.27)

We will make use of this result later in Section 3.7 when we are dealing with state con-
straints.

3.6 Control Constraints

In the standard optimal control problem stated in Definition 3.2.1 the range of control
vector function u € (Ly[tg,ts])™ is assumed to be all of R™. In this Section we consider
control constraints of the general form

g(z,u) <0 (3.28)
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with g : R**™ — R?, 1 < p < m, and
rank 99 = p. (3.29)
Ou

Assume u* furnishes a solution to the optimal control problem (3.1), (3.2), (3.3), (3.4),
(3.28) and assume control constraint (3.28) is active on some subinterval [t;, 2] of [to, t5].
(i.e. g(z,u*) = 0 on [t;,15]), and control constraint (3.28) is non-active on [to, ;) U (t2,1/]
(i.e. g(z,u*) < 0 on [to, 1) U (t2,ts]). Then necessary conditions for optimality of u* are
obtained from the following formalism: define the Hamiltonian

H(z, A\ u) = M f(z,u) (3.30)

and define the Lagrange multiplier vector A as solution of the final value problem

OH dg

9% 1 9V
N = 5oy (3.32)

Then, at (almost) every instant of time, the optimal control u* is such that the Hamilto-
nian (3.6) is minimized subject to all active control constraints (Minimum Principle):

u*(t) = arg uIélli'tnm H(z(t),A(t),v) on [to,t1) U (t2,15] (3.33)

min H(z(t),A(t),u) on [ty,ta]. (3.34)

* 1) = .
u* () argueRm,g(lx(t),u)=o

The multiplier vector function of time g : R — RP? satisfies

{ =0 on intervals where g(z,u) <0 (3.35)

% + HT%% =0 on intervals where g(z,u) = 0.

The “switching times” t;, t, are determined from the condition that the Hamiltonian be
continuous

H(t*) = H(t.") (3.36)
H(ty) = H(t27). (3.37)
An optimality condition associated with final time ts is given by
0% ov
H)|, + —+vi—=0. 3.38
Itf + atf +v atf ( )

Again, the easiest way to obtain these results is to analyze the total variation of the
augmented cost function. For the case of state constraints instead of control constraints
this is demonstrated in Jacobson, Lele, Speyer [24]. (Mathematically, state constraints can
be viewed as control constraints in conjunction with additional interior point constraints,
see next Section). An alternative way of derivation which is even easier, but sometimes
very powerful, is given as follows:

First note that (as long as we don’t have “chattering control”, see [24]) every instant of
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time t € [to,ts] belongs to a time interval [ry, 73] of length > 0 which is either completely
constrained (i.e. g(x,u) = 0 on [y, 7;]) or completely unconstrained (i.e. g(z,u) < 0 on
[11,72]). By the Principle of Optimality (see [24]) the control on unconstrained arcs is
determined from the usual unconstrained optimality conditions (3.6), (3.7), (3.8), (3.9),
(3.10), which is equivalent to conditions (3.30), (3.31), (3.32), (3.33), (3.35), (3.38) with
# = 0. On arcs with active control constraints, condition g(z,u) = 0, ¢ : R**™ — RP

can be viewed as specifying p controls w (u = Z) , v € R™"7P w € RP) in terms of

states z and the remaining m — p controls v. The existence of a solution w = h(z,v) of
g(z,u) = g(z,v,w) = 0 is guaranteed at least locally by assumption (3.29) (see Implicit
Function Theorem [2]) even if an explicit solution of g(z,v,w) = 0 is not possible. Upon
substituting w = h(z, v) the constrained optimal control problem is transformed into an
unconstrained optimal control problem. For the evolution of costate vector A we get from

(3.7) (chain rule)

iT - _OH _OHOh

0z Owoz’

From differentiation of the identity g(z,v,h(z,v)) = 0 w.r.t. z we obtain

@) @
dzr ow oz /)’

so that the adjoint differential equation can be written as

ir_ _OH aH< @>-la_g

T 9x  Ow \ Ow oz’
—

Similarly, the constrained minimization problem (3.34) written in the form

Y=t wt] = i H 3.39
Wl =ag i (3:39)
yields
g(z;v,w)=0 (3.40)
oH O0H g\ dg _
511—)4'6—10(—6—“]) a—w-O (3.41)
N————— ——

and we see that multiplier x in (3.31), (3.35) is exactly the multiplier obtained from ap-
plying the Kuhn-Tucker conditions to the finite dimensional minimization problem (3.39).
This basic concept is the general idea used in Chapter 6 to derive an extension of Goh’s
Necessary Condition for singular control along arcs with active state and/or control con-
straints.
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3.7 State Constraints

In the previous two Sections we introduced control constraints (3.28) and interior point
constraints (3.21) to the standard optimal control problem stated in Definition 3.2.1. In
this Section we consider state constraints. These are of the general form

h(z) <0 (3.42)

with A : R® — RP, 1 < p < m. As in the previous Section, the Principle of Optimality
(see [24]) implies that along time intervals where the state constraint is non-active the
trajectory evolves as if there were no state constraints at all, i.e. equations (3.2), (3.6),
(3.7), (3.9) are valid. Along time intervals, say [t1,22], where the state constraint is active
we note that

h(l‘) =0 on [tl,tQ]

is equivalent into
KO z)=0 att=1

(3.43)
Ra-D(z)=0 att=1
AD(z,u) = 0 on [t,12). (3.44)

Here superscript (i) denotes i-th total time derivative and ¢ is the smallest integer ¢ € N
such that u appears explicitly in h(). Hence we see that an active state constraint h(z) =
0 on some interval [f;,t;] is equivalent into control constraint (3.44) along [t1,t2] and
interior point constraints (3.43) at time ¢ = ¢;. The regularity condition (3.29) for control
constraints translates immediately into rank Q% = p. Optimality conditions implied by
(3.43), (3.44) are given in the previous two Sections. For convenience these results are
restated below:

Optimality conditions for entering the state constrained arc:

A (z)=0 att=1¢

Rl (z)=0 att=1t
Ht—H =0att=1t

oh(0) | ghle—1)

At =" -1 S —
oz =17 5

att:tl.

Optimality conditions in the interior of the state constrained arc:

u*(t) = ar min H(z(t), M1),u
() =arg o.M o (z(2), A1), u)

= f(z,u)
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The multiplier y is determined by (3.35) (with g replaced by k), and hence, as noted ear-
lier, is exactly the multiplier obtained from applying the Kuhn-Tucker conditions applied
on the finite-dimensional minimization problem (3.34) (with g replaced by h). From this
observation we find immediately the supplementary optimality condition

p20.

Even stronger supplementary optimality conditions on multiplier u are given by

.
(_1)'d_tl: >0 fori=0,1,...,q—1. (345)

This result is obtained from linking state constraint g(z) = 0 directly to the cost function
rather than splitting g(z) = 0 up into an interior point constraint and a control constraint
as shown in (3.43), (3.44) and linking both parts separately. The theoretical background
for this procedure is provided by a generalized multiplier theory (see [33]). Result (3.45)
is then basically obtained through simple transformations involving integration by parts
(see [31]).

Optimality conditions for leaving the state constrained are:

HY —H  =0att=t,.

In contrary to control constraints we have to consider also the possibility of a state con-
straint being active only at an isolated point in time, a so-called touch point. (Note
that a control constraint being active at an isolated point in time, say ty, is equivalent
to associating a fixed numerical value with the control function u(t) at time ¢;. This is
not sensible as point evaluation for L,-functions is not well-defined. Hence non-trivial
touch-points can never exist for control constraints). In case of a touch point, say t;, the
only active constraints are the interior point constraints (3.43), while before ¢, and after
t1 (at least in some neighborhood) the trajectory evolves like a free trajectory. Hence for
a touch point ¢, associated with a g-th order state inequality constraint we get

RO(z)=0 att=1

R D(z)=0 att =1
HY—H =0att=1¢,
on(0) | Hhla-1)

9x ' ag

In [31] it has been shown for the case of scalar control u that touch points are not possible
for state constraints of order ¢ = 1, except if very special conditions are satisfied. In
Chapter 7 this result is generalized to the case of controls of arbitrary dimensions m € N.

A =2 =1,
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3.8 Existence of a Solution and Jacobi’s Condition

In the formulation of the Minimum Principle it is always assumed that the optimal control
problem under consideration does have a solution. It is possible then to conclude that the
optimal solution must satisfy the optimality conditions stated in the previous Sections.
In general it is not possible to reverse this process, i.e. an extremal which satisfies the
_necessary conditions stated in the previous Sections need not furnish a solution to the
optimal control problem. In Lee & Markus [24] fairly general existence theorems are
stated. One of these theorems is given as follows:

Theorem 3.8.1 Consider the non-linear process in R"
= f(z,t,u) (3.46)

The data are as follows:

1) The initial and target set Xo(t) and X,(t) are nonempty compact sets varying contin-
uously in R™ for all t in the basic prescribed compact interval 1o <t < 11,

2) The control constraint set Q(z,t) is a nonempty compact set varying continuously in
R™ for (z,t) € R" x [1p <t < 7).

3) The state constraints are (possibly vacuous) h'(z) <0, ..., k7(z) < 0, a finite or infi-
nite family of constraints, where hY, ..., k" are real continuous functions on R™.

4) The family F of admissible controllers consists of all measurable functions u(t) on var-
jous time intervals tg <t < t1 in [rg < t < 7] such that each u(t) has a response z(t) on
to < t < t; steering z(to) € X(to) to z(t1) € X(t1) and u(t) € Qz(1),1), R} (z(t)) <0,
...y A7(z(t)) < 0.

5) The cost for each u € F 1s

Ctu) = gla() + [ e Lu0) 4+ e 2(=(0)

where f° € C! in R™™ and g(z) and y(z) are continuous in R™.
Assume

(a) The family F of admissible controllers is not empty.
(b) There is a uniform bound

|27(t)| _<_ b on to Stg tl

for all responses z(t) to controllers u € F.
(4) The extended velocity set

V(z,t) = {f°z,t,u), f(z,t,u)| v € Nz, 1)}

is convez in R™*! for each fized (z,1).
Then there ezists an optimal controller u*(t) on ty <t < Ty in F minimizing C(u).

Conditions on states z and controls u are stated such that a priori the existence of a lower
bound on cost function C(u) is guaranteed. Let co € R be the greatest lower bound on cost
function C(u). Then, together with the assumption that the set of admissible controls is
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not empty, it is concluded that there is a sequence of admissible control functions such that
the associated costs are monotonically decreasing and have a cluster point at ¢y. Finally
it is shown that this sequence of control functions has a weakly convergent subsequence
and that an admissible control function is in this weak limit.

For practical purposes theorems of the form 3.8.1 may be inadequate because of the
strong assumptions necessary. An alternative line of thinking is presented in Bryson &
Ho [5]. Without knowing whether the original optimal control problem has a solution it is
proposed to generate a solution candidate by solving the first order necessary conditions.
About this solution candidate one considers so-called weak perturbations. (these are
perturbations éz in states = with the property that for §éz — 0 also §& — 0). Restricting
ourselves to weak perturbations (rather than all possible perturbations available in L) it
is possible to expand the augmented cost function into a Taylor series about the reference
solution. By construction the first order term of this expansion is zero and the leading
term is of second order. Minimization of this second order term is equivalent to solving
a linear quadratic optimal control problem, the so-called Accessory Minimum Problem
(AMP).Controls and states in the AMP are exactly the (first order approximations of)
perturbations in controls and states about the reference solution for the original problem.
Now it is clear that
i) the reference solution for the original problem is non-optimal if there is a solution to
the AMP which furnishes negative cost.

ii) the reference solution for the original problem furnishes at least a weak local minimum
if all non-trivial control functions (control functions which are not identically zero) yield
cost greater than zero.

Because of these considerations the study of linear quadratic optimal control problems
gains tremendous theoretical importance. Explicit results on this matter are presented
for instance in Bryson & Ho [5], Chapter 6.3, where sufficient conditions are stated that
allow one to transform the second variation of the cost function into a perfect square.
By construction these conditions are sufficient conditions for the reference solution under
consideration to furnish a weak local minimum to the original problem. Still, if a reference
solution is shown to furnish a weak local minimum, it is not clear whether it also furnishes
a strong local minimum. In fact it is not even guaranteed that the original problem under
consideration does have a solution.

Another interesting treatment of the AMP is given in a paper by Breakwell & Ho
[3]. In this paper it is shown that the existence of a conjugate point along the reference
solution (for the definition of conjugate points see [3], [5], or Chapter 8 of this report)
implies the existence of a trajectory which furnishes negative cost to the AMP. Hence, by
virtue of i) above, the existence of a conjugate point implies non-optimality of the original
solution candidate. The proof given in [3] is not constructive. That means, a trajectory
that furnishes negative cost to the AMP is shown to exist, but it is not given explicitly.
In Chapter 8 of this report a modification of the proof in [3] is given which explicitly
constructs a trajectory that furnishes negative cost. Because of its explicit character, it is
possible to extend the new proof to the case where the coefficient functions in the AMP
have any finite number of corners. The results obtained so far apply immediately for
corners in the AMP that are induced by an explicit non-smooth time dependence of the
state equations for the original problem. In the future it is planned to extend the new
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approach also to corners in the AMP induced by interior point conditions as discussed in

Section 3.5.
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Chapter 4

Example: Vertical
Rocket-Powered Ascent Study
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Chapter Overview

The Goddard Problem is that of maximizing the final altitude for a vertically ascending,
rocket-powered vehicle under the influence of an inverse square gravitational field and
atmospheric drag. The present example is concerned with the effects of two additional
constraints: a dynamic pressure limit ¢maz, and a specified final time t;. Nine different
switching structures involving zero-thrust arcs, full-thrust arcs, singular-thrust arcs, and
state constrained arcs are obtained for prescribed values of gna, between 0 and oo and
the final time t; between {f min and t;*. Here tf nin 18 the minimum possible time within
which all the fuel can be burned, and t;* is the optimal final time. For all points in
the above defined domain of the gnqz,s-plane the associated optimal switching structure
is clearly identified. Finally, a comparison between the optimal solutions and a simple
intuitive feedback law is given.

4.1 Introduction

The problem of maximizing the final altitude for a vertically ascending rocket was first
formulated by Goddard [10] in 1919. Numerous authors such as Hamel [14] in 1927,
Tsien and Evans [44] in 1951, Miele and Cavoti [32] in 1958, Leitmann [26], [27], [28],
[29], [30] in 1956-1963, and Garfinkel [9] in 1963 have analyzed the problem using various
mathematical methods and assumptions on the equations of motion. An extensive study
of the problem under realistic assumptions on the equations of motion has become possible
only with the development of the theory of optimal control in conjunction with powerful
digital computers. Recently, Tsiotras and Kelley [45], [46] have studied the effect of a
final time specification and of drag modelling.

In the present treatment a dynamic pressure constraint, which in the context of opti-
mal control represents a first-order state inequality constraint, is introduced to the prob-
lem. The effect of this constraint as well as the effect of restrictions on the final time
are investigated for their effect on the switching structure and the maximum attainable
altitude.

4.2 Problem Formulation

The problem is to maximize the final altitude for a rocket ascending vertically under
the influence of atmospheric drag and an inverse square gravitational field. The thrust
magnitude T is the only control and is subject to fixed bounds 0 < T < Tnas (control con-
straints) and a dynamic pressure limit ¢ < gmaz (state constraint). The following assump-
tions are made: point-mass model, Newtonian central gravitational field, one-dimensional
trajectory, air density varies exponentially with altitude, constant drag coefficient, and
constant exhaust velocity.
In non-dimensionalized form the problem is given as follows:

min — r(ty) (4.1)

subject to the equations of motion



o = =20 1 (4.2)
m r
. T
m = —=
c
the control constraints
T € [0’ Tmar] (43)

the boundary conditions

a) (0) =1 d) r(ts) to be maximized
b) v(0) =0 ) v(ty) free (4.4)
¢) m(0)=1 f) m(ty) = my

and the state inequality constraint

Po(r,0,7) = 0 = Uz < 05 Oa(r) 1= (/2222 B0), (4.5)

The final time t; may be fixed or free. The dynamic pressure limit gy,,, is prescribed
with values between g,,,, = 0 (trivial case, rocket is allowed only hovering with maximum
velocity zero) and gma; = +00 (dynamic pressure limit can be ignored). Radial distance
r, velocity v, and mass m are the states; thrust 7" is the only control. Drag D is given by

D=qCp

where
qg= ,UZbeﬁ(l—r)

is the dynamic pressure times cross section area [A]. Note that constraint (4.5) can be
identified as a dynamic pressure limit ¢ — gnqaz < 0.

The variables in the system description (4.1) - (4.5) have been non-dimensionalized
with initial radius [ro] as the length-scale, initial mass [mq] as the mass-scale and time-
scale given by tg = \/Zgl: where g is the value of Earth’s gravitational acceleration at the

initial radius.

4.3 Minimum Principle

Problem (4.1) - (4.5) is solved by applying the Pontryagin Minimum Principle. Assuming
that a solution of (4.1) - (4.5) exists, the Minimum Principle states that at every point in
time the control is such that the variational-Hamiltonian

H(r,v,m, A, A, An) = A+ A0 + A

T-D 1 T
e (2 D) 0T
m r
is minimzed subject to all control constraints:
T = arg gnégﬂ; U = {T € R| T admissible}. (4.7)
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On ’unconstrained arcs’ (i.e. on time intervals where (4.5) is satisfied with strict inequal-
ity)

U={T€R|0<T < Thaz}- (4.8)
On ’constrained arcs’ (i.e. on time intervals, say {1, 72] where (4.5) is satisfied with strict
equality)

Py =0 on [y, 7] (4.9)
is equivalent to
Phb=0att=m (4.10)
Pi=0ont€ (r,72) (4.11)
where P T_D .
0 - /
_ %o __ _ 12
Pl dt m 7‘2 Umaz T‘)U (4 )
so that the set of admissible controls is
U={TeRO0LT<Thaz, 1 = 0}. (4.13)

This set 'usually’ consists of a single point, but may be empty. The evolution of the
Lagrange multipliers A; , z € {r,v,m} is governed by

: ol

Ap = —— 4.14

‘ Oz (4.14)
on unconstrained arcs. On constrained arcs the implicit dependence of the control on
states via (4.11) implies

/\z = ——8_; - u@? (415)

(see Bryson, Denham & Dreyfus (4] or Sections 3.6, 3.7 of this report). Supplementary
optimality conditions are given by
uw>0 (4.16)

<0 (4.17)

where 4 is the Valentine multiplier defined in (3.35),i.e. p =~ g_}TI/ %ETL =X+ A
and (4.16), (4.17) is obtained from (3.45) in Section 3.7.

4.4 Hamiltonian and Adjoint Equations

Explicitly the Hamiltonian (4.6) takes the form

D 1 T
H= Mot (T—-ﬂ-—) ot (4.18)
m C

r2

and the adjoint equations are

;\,. = i\ﬂa—q—/\v?—_p(_}_@_i_z_v" (T)v>

m Or r3 mor 1 maz
. A 0D 19D ,
Ay = maw T K <—E—(;)? - vmar(T)> (4.19)
Ay T-D
N



where

# =0  on unconstrained arcs (4.20)
o0H 0P
g = i . 21
a7 TH 3T 0  on constrained arcs (4.21)

Here / denotes differentiation w.r.t. radial distance r.

4.5 Control Logic

With the switching function § defined by

_OH X, A
§i=gm=t_ (4.22)
the Minimum Principle (4.7), (4.8) implies
0 if §>0
T=< Thar if §<0 (4.23)
Tsing if §=0.
On ’singular arcs’ § = 0, $ = 0, § = 0 imply
Ay — /\m% =0, (4.24)
A oD D
M- =—+=)=0, .
- (av + C) 0 (4.25)
and 4 4
Tsing = Lt 2, (426)
A3
where
1. D <B_D 2) 9*D 82D(D 1)
YT T me \ov T e dvor’ ~ vz \m T 12)°
(e () (20
27 e \or ov \m = r? ar ' 3 )’
and

1 <3D D) 0*°D1 0D 1
Az = -

v ¢ rm ' Hv me’
respectively. The singular arc is of first order (see Bryson & Ho [5]). On constrained arcs
(4.7), (4.13) imply

mc

S NI WL = ut :
I vt A . (from 8T+M8T> (4.27)
T=D+ g +muy(r)v  (from P, = 0). (4.28)
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Along singular arcs the Generalized Legendre-Clesch condition (see Kelley, Kopp & Moyer

(18}) 5 (g0 rd
(-D'57 (szt_ZE (a—;{—)) >0, ¢g=1 (4.29)

\o{ 1 (0D D 9°D1 08D 1
_imf 2 (T Ny | > :
mc(mc<8v+c)+avzm+8vmc)‘o (4.30)

and is checked numerically.

yields

4.6 Transversality and Corner Conditions

All transversality and corner conditions are given such that the first variation 8J of the
cost function (4.1) J = —r(ty) is zero. For the boundary conditions (4.4) this yields

A(ty) = -1 (4.31)
M(ty) = 0. (4.32)

In case of free final time ¢y, the associated optimality condition is
H(t;)=0. (4.33)

The Hamiltonian H is continuous throughout the time interval [0,¢4], including across
corners. At switching points between minimum and maximum thrust T this implies

S =0, (4.34)

where § is the switching function given in (4.22). At the beginning of singular arcs (4.24)
and (4.25) have to be satisfied. At the beginning, say t1, of the constrained arc conditions
are

0,) Pg(tl) = 0
b ST(It-T7)=0
dP
¢ AT=AT- 108—1} (4.35)
dP,
o o2
d) AN =hT b

&) Amt=AnT - 10%%

where superscripts +, — denote denote evaluation at times t; + €, 1t —¢, € >0,¢e =0,
respectively. The end, say t2, of the constrained arc is determined by

ST(Tt =T )=0att =t (4.36)

Conditions (4.35b) and (4.36) are equivalent to the continuity of the of the Hamiltonian
at t, to, respectively. Note that two solutions, namely S~ = 0 and Tt — T~ = 0 are
possible. The jump in the multipliers (4.35¢), (4.35d), (4.35€) is implied by the interior
point condition (4.35a).
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4.7 Switching Structures

Problem (4.1) - (4.5) is solved for a range of prescribed values gnq; > 0 and t; > 0.
For explicit calculations the numerical values Tj,q, = 3.5, my = 0.6, b = 6200, 8 = 500,
¢ = 0.5, Cp = 0.05 are used. In dimensional form this implies the exhaust velocity
3.95 103 2 and from the given value for b one determines that 8 =629.6 r—’:l% (A=cross
section area). These values are adopted from [47] and correspond to a Soviet surface-to-
air missile SA-2. The dimensional value of maximum dynamic pressure is recovered by
multiplying gmn.. by 6174 RNT

As noted above, the switching structure, that is, the sequence of different control logics
that actually solves the problem is not known in advance. For a given problem it has to
be found by ’numerical experiments’. Assuming a certain switching structure the state
equations (4.2), costate equations (4.19), along with boundary conditions (4.4a), (4.4b),
(4.4¢), (4.4f), transversality conditions (4.31), (4.32) and corner conditions implied by the
assumed switching structure yield a multipoint boundary value problem (see Figure (4.6)
for an example case). For ¢maz > 0 and ts ranging between the minimum possible flight
time {fmin(@mar) Within which all the fuel can be burned, and the optimal flight time
t£*(@maz ), the following different switching structures are found to solve the problem:
(S1) full - zero
(52) full - singular - zero
(S3) full - singular - full - zero
(S4) full - constrained - zero
(S5) full - constrained - singular - zero
(S6) full - constrained - singular - full - zero
(S7) full - constrained - full - zero
(58) full - constrained - full - singular - zero
(59) full - constrained - full - singular - full - zero
For switching structures (S4), (S5), (S6) the continuity of the Hamiltonian at the end
of the constrained arc, say at time ¢;, imposed by condition (4.36) is satisfied through
§7 = 0 (or equivalently u~ = 0). For switching structures (S7), (S8), (S9) condition
(4.36) is satisfied through T+ — T~ = 0. The domains in the s, @maz-plane where the
above switching structures solve problem (4.1) - (4.4) are shown in Figure (4.1). The time
histories of thrust T, the switching function S, and the dynamic pressure ¢ for selected
trajectories in the free time case are given in Figures (4.2), (4.3), (4.4), .

4.8 Numerical Procedure for Solving Multipoint Bound-
ary Value Problems (MPBVPs)

For switching structure (S5) [full - constrained - singular - zero] the associated MPBVP
is indicated in Figure (4.6). It is clear that the trajectory can be obtained by simple
forward integration once all parameters hg, vg, mg, Ahoy Avos Amo, lo, Aty, Aty, Ats,
Aty are known. These 11 parameters are determined by the 11 conditions (1) - (10) and
(11a) for fixed final time, (11b) for free final time. (The jump conditions for the Lagrange
multipliers can be considered directly during the integration). The smoothness of the
right-hand side of the differential equations on each subarc implies smooth dependence of
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all conditions on the parameters, so that a Newton Method can be applied to solve this
root finding problem. As noted in Chapter 2 the routine ZSCNT of the IMSL subroutine
library (version 9.2) is used for this purpose. The software package presented in Section
2.5 proved to be suited very well for the challenges that one meets in solving multi-
point BVPs associated with optimal control problems with switching points. As shown in
Section 2.4 caution has to be applied when setting up the zero-finding problem associated
with a given BVP. This zero-finding problem is not determined uniquely and different
zero-finding problems associated with the same BVP may have very different numerical
solvability properties.

4.9 A Simple Feedback Strategy

An intuitive feedback law to solve problem (4.1) - (4.5) is given as follows: choose T as
large as possible subject to the constraints T' € [0, Traz] and Po = ¢ — @maz < 0. That
means the thrust is always set T' = Ty.q, and is reduced only along arcs where the dynamic
pressure limit Py = 0 is active. The optimal final time t;* is obtained from v(t;*) = 0.
The structure of these feedback solutions turns out to be of the following form:

(FBO) constrained if Gz =0

(FB1) full - constrained - zero if  @maz €(0,8.303)
(FB2) full - constrained - full - zero if gnas € (8.303,21.334)
(FB2) full - zero if  Gmaz > 21.334

By comparison with the optimal switching structures given in Figure (4.1) it is found
that these feedback strategies actually yield the optimal solution for g, < 8.303. For
Gmaz > 8.303 the loss in final altitude increases until gmaz, free, the maximum attainable
dynamic pressure with thrusters burning on full throttle, is reached. For ¢maz > ¢maz,free
the loss in performance remains constant. These results are shown in Figure (4.5). It is
observed that the loss in final altitude never exceeds 2.5 %.

4.10 Conclusion

The effect of a dynamic pressure constraint on the vertical ascent of a sounding rocket
has been studied. Trajectories leading to maximum possible altitudes have been obtained
for arbitrarily prescribed limits g, on the dynamic pressure ¢ and for final times t;
ranging between the minimum possible value within which all the fuel can be burned and
the optimal final time ¢;*. Nine different switching structures have been obtained and the
regions in the ts, ¢mq,-plane where they furnish the optimal solutions have been clearly
identified. Finally the optimal solutions in the free-time case have been compared with a
simple intuitive feedback strategy.
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Figure 4.2: Thrust vs. Time for Selected Trajectories in the Free-Time Case
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Figure 4.3: Switching Function vs. Time for Selected Trajectories in the Free-Time Case
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Figure 4.4: Dynamic Pressure ¢ vs. Time for Selected Trajectories in the Free-Time Case
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Figure 4.6: Schematic Representation of the Boundary Value Problem Associated with
the Switching Structure Full — Singular — Full — Zero

45



Chapter 5

Example: Range Optimization
for a Supersonic Aircraft
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Chapter Overview

Range optimal trajectories for an aircraft flying in the vertical plane are obtained from
Pontryagin’s Minimum Principle. Control variables are load factor n which appears non-
linearly in the equations of motion and throttle setting 7, which appears only linearly in
the equations of motion. Both controls are subject to fixed bounds, namely 0 < 7 <1
and |n| € Npmez. Additionally, a dynamic pressure limit is imposed, which represents
a first-order state-inequality constraint. For fixed flight time, initial coordinates, and
final coordinates of the trajectory the effect of the load factor limit |n| € Rag is studied.
Upon varying fmaz, six different switching structures are obtained. All trajectories involve
singular control along arcs with active dynamic pressure limit. The explicit derivation of
possible control logics is presented in Appendix A. This includes the application of the
higher-order convexity test (Generalized Legendre-Clebsch Condition) for singular control
logics as presented in Chapter 6.

5.1 Introduction

Great efforts are being undertaken to develop real-time, near-optimal feedback algorithms
either for enhancement of aircraft performance by optimizing specified maneuvers or as
autonomous guidance schemes for short and medium range air-to-air missiles ([6],[12],[42],
(13],[41]). Open-loop control logics obtained by state-of-the-art optimization techniques
are an important tool in testing the accuracy and finding the limits of such feedback
laws. In a recent study ([21],(22]) open-loop optimal control solutions in conjunction
with perturbation techniques have been used directly to develop feedback algorithms. In
this context minimum time intercept trajectories, or, often equivalently, maximum range
trajectories for fixed flight time play an important role in modern air combat scenarios.
In the present example Pontryagin’s Minimum Principle is applied to determine range-
optimal trajectories for an aircraft flying in the vertical plane. State variables are energy
E, altitude h, and fligh-path angle y; control variables are load factor n and throttle
setting 1. Control 77 appears only linearly in the equations of motion and is subject to fixed
bounds 0 < < 1. Additionally, a dynamic pressure limit is imposed on the trajectory,
which, in the context of optimal control represents a first-order state inequality constraint.

For sufficiently large fixed final time the maximum-range trajectory will begin with a
climb to the dash—point. This is the point of maximum sustainable speed on the level-
flight envelope. State/ control values at the dash—point can be found by solving the
maximization problem:

max v(E, h)
subject to the level-flight constraints:
L =W
T =D

Once at (or near) the dash-point steady flight continues until near the terminal time,
when the aircraft executes a maneuver to meet specified end—conditions and to achieve
maximum range. In this chapter we study the effect of a load-factor limit (|n| < 7maz)
on this maneuver. Six different switching structures, involving singular control on state
constrained arcs are encountered if 7,4, is varied between np.; = 00 and ez = 9.
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5.2 Aircraft Model

The equations of motion of an aircraft flying in the vertical plane are

. v
b= (T - D)o (5.1)
h =wv siny (5.2)
=9 (L
7= (W cos7> (5.3)
=7 cosy. (5.4)

The specific energy E, replacing velocity v, the altitude A, the flight-path angle ~, and
the range z are the state variables. Load factor n and the power setting 5 are the control

variables. Weight W and gravitational acceleration g are assumed to be constant. Velocity
v is a short notation for v = \/2g(E — k). The air density pin [kg/m3] is given by

1.225
p(h) =

y = —1.0228055 — 0.12122693 10734 + r

r = 1.0228055¢~
z= —3.48643241107%h + 3.50991865 10~ °h2+
—8.33000535 101443 4+ 1.15219733 10~ 1844

The speed of sound in [m/s] is given by
a(h) = 20.0468v8
where the temperature 8 is given by

6 =292.1 - 8.877431073h + 0.193315 10762 + 3.72 10~ 1243,

eY

In these expressions A is altitude in [m]. The Mach number is given by M = a(“h . The
lift L, the drag D, and the maximum thrust T are given as functions of h, M, a:gn

g= %p(h)vzs

L=Wn
W2
D=gq (C’Do(M) + K (M) —q—z—n2)

aaM* + asM3® + aaM2 + /M + ag
by M + b3 M3 + b M2 + WM+ b
¢ - caM* + s M3+ oM 4+ e M + ¢
C dsMS + dyMA 4 dsM3 ¥ da M2 + M + dy
T(h, M) = es(M)h* + e(M) h* + es(M) h® + e(M) B2 + 1 (M) h + eo( M)
where fori = 0,1, ... 5
ei(M) = fisM® + fuM* + faM® + fuM? + fu M + fio.
The numerical values of the constants ai, b, ¢;, d;, fij are given in Tables 5.1, 5.2, 5.3,
and represent a high performance fighter-interceptor.

Cpo =
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5.3 Problem Formulation

The problem under consideration is that of finding control functions n(t) and n(t) that
steer an aircraft from prescribed initial states energy Fo, altitude ho, and flight-path angle
7o to prescribed final states energy Ey, altitude hy, and flight-path angle vy in prescribed
flight time (t; — to) (without loss of generality to = 0) such that the downrange z is
maximized. Along the optimal trajectory a set of state and control constraints has to be
satisfied. Explicitly the problem can be stated in Mayer form as follows:

min — z(ty) (5.5)

subject to the state equations (5.1), (5.2), (5.3), (5.4), the control constraints

-n<0 (5.6)
n—-1<0 (5.7)
— N = Nz <0 (5.8)
+ 71— Npar <0 (5.9)
the state constraint
Co(E, hy 7, ) 1= ¥ — Umaz(h) <0 (5.10)

and the boundary conditions

a) E(0) = 38029.207[m] ¢) E(t;) = 9000 [m]

b) h(0) = 12119.324[m]  f) h(ty) = 942.292[m]
¢) 7(0) = 0 [Rad) 9)1(ts) = —0.2[Rad)
d) z(0) = 0 [m] h) z(ty) to be optimized

(5.11)

and the final time t; prescribed, e.g.
ty = 60[s]. (5.12)

Here n,,q. is a specified constant denoting the maximum allowed absolute value of the
load factor n = v—l{,- In state constraint (5.10) vjaz(h) is a specified function of al-
titude h. With v,.-(h) chosen appropriately this covers the important case of a dy-
namic pressure constraint. Boundary conditions (5.11a), (5.11b), (5.11c) refer to the
dash-point or high speed point. The boundary conditions (5.11 e), (5.11 f), (5.11 g)

are picked more or less arbitrarily. The only important features are that h(ts) < h(0)
and v(ty) = \/Qg(E(tf) — h(t5)) < Vmac(h(ty)), i.e. in the altitude-velocity chart the
prescribed final point of the trajectory is located to the left of the state constraint (5.10).

5.4 Relaxed Problem Formulation

Existence theorems of optimal control theory require convexity of a certain velocity set
or hodograph. Given a state equation & = f(z, u), = € R", u € R™ with admissible
controls u € U C R™, the hodograph at some fixed state zo € R" is defined as the set
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S = {2 €R*| %= f(zo, u), u € U} of possible state rates. For state equations (5.1),
(5.2), (5.3), (5.4) with controls [n, n] € R? subject to the constraints (5.6), (5.7), (5.8),
(5.9), the hodograph is clearly non-convex as indicated in Figure 5.1. For aircraft models
with quadratic drag polar, as the one used in this chapter, this deficiency can be overcome
by rewriting state equation (5.1) as

v
w
with Dyar(M, k) := D(M, h, nmez) or any function Dpnoz(M,h) with Dpor(M,R) >
D(M,h,nmaz). The new control 6 replaces the old control 7 and is subject to the con-
straints

E=[8(T = D+ Dmaz) — Dpas) (5.13)

—6<0 (5.14)
§-1<0. (5.15)

Now the relaxed control problem is given by
min — z(ty)

subject to the state equations (5.13), (5.2), (5.3), (5.4), control constraints (5.14), (5.15),
(5.8), (5.9), state constraint (5.10), boundary conditions (5.11a), (5.11b), (5.11c), (5.11d),
(5.11e), (5.11f), (5.11g), and the final time t; prescribed as in (5.12). The hodograph
associated with the new system dynamics is obviously convex as indicated in Figure 5.2.
Note that state inequality constraint (5.10) being active on some time interval [T1, 2] (i.e.
Co(E, h, v, ) = 0 on [y, 73]) is equivalent to

Co(E,h,v,z)=0att=m (5.16)
CI(E’ h’ Y, TN, 6) =0on [T], TQ], (517)

where

d
CI(E’ h7 Y, Ty N, 6) = ECO(E’ h7 7, "L‘)

= (6(T = D + Dmaz) — Drnaz) -57 — v siny (v;m + %) . (5.18)

5.5 Minimum Principle

The relaxed optimization problem as stated above is solved by applying the Pontryagin
Minimum principle. It states that at every point in time the controls have to be chosen
such that the variational Hamiltonian

H(E, b, 7,2, B, Ay Ay Ary 6,0) = Ag E+ M h+ Ay 4 + Xy & (5.19)

is minimized subject to all control constraints. Let the vector valued function g:R6— RY
be defined by
91(E, h, v, z; 8, n) =6
g2(E7 h’ 7, T3 67 n) =6-1
gS(Ea h, v, z; 5, TL) = N = Ny
94(Ea h, Y, x; 6, n) =41 — Nz

(5.20)
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so that inequalities (5.14), (5.15), (5.8), (5.9) can be written concisely as ¢ < 0. Then
Lagrange multipliers Ag, Ax, Ay, ), are solutions of the adjoint equations

_9H _ T3 _ 80
AE=—5g O 3L K 5E
,\h:_ﬂ_aT_a_HQQL
S = 8 UTSE sk (5.21)
e
S 5h . Tog
/\:c - T 8z g 5% T
where o;, 1 = 1, ..., 4 and p are multipliers associated with constraints g; < 0,1 =1, ..., 4

and C; < 0 (C} as given in (5.18)), respectively. On time intervals where constraint (5.10)
is not active (i.e. Co(E, h, 7, ) < 0), multiplier p is identically zero:

= 0if Co(t) < 0. (5.22)

On these intervals multipliers o, 7 = 1, ..., 4 are determined at each instant of time from
the Kuhn-Tucker conditions applied to the finite dimensional parameter optimization

problem
(6, n) = arg lgl<i(I)l H. (5.23)

At times where state constraint (5.10) is active (i.e. Co(E, h, 7, ¥) = 0), multipliers
o, p are determined from the Kuhn-Tucker conditions applied to the finite dimensional
parameter optimization problem
6, n)=arg min H. 5.24
(6, n) =arg min | (5.24)
In both cases, as a consequence of the Kuhn-Tucker conditions, components of multiplier
vector o are zero along intervals where the associated constraint is not active:

0;=0ifg>0, i=1,.,4, (5.25)

and components of multiplier vector o are non-negative along intervals where the associ-
ated constraints are active, i.e.

0;>0ifgi=0, i=1,..,4. (5.26)

5.6 Possible Control Logics

At each instant of time controls n, 6 are determined from the Minimum Principle given
by equations (5.23) in case C; < 0 and (5.24) in case C; = 0, respectively. Since the
Hamiltonian H and the constraint functions g and C; are smooth functions of their
arguments § and n, the Kuhn-Tucker conditions imply that at the solution point [6*,n*]
the following conditions have to be satisfied at each instant of time:

d

a5+ oTg+uC)=0 (5.27)
0 T

5;(H+0 g+uCi)=0 (5.28)
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g<0 (5.29)

Cy <0 (5.30)
c>0 (5.31)
©>0 (5.32)

[A6, An] >0 (5.33)

?(H+aTg+uCy) 9*(H+oTg+uC) A6
942 86;%1
8% (H+oTg+uC1) 8*(H+oTg+uC) An
andé 9n?
for all (A8, An) € R? satisfying %%A& + %An = 0. Here vector function h contains
exactly the active components of the inequality constraints g < 0and C; €0. The set
of active control constraints and the character of the solution of (5.27) - (5.33) depends
greatly on the direction of the multiplier vector [Ag, Ag, Ay, Az])7, and through state
constraint (5.10) also on the state itself. The explicit analysis for solving this finite
dimensional constrained minimization problem as well as application of the Generalized
Legendre-Clebsch Condition are given in Appendix A. It is helpful to define

Ay 99
_ M 34
T NE2WE (5:34)
A 0 (Dmazvy

ny = f; cos27(—ah—w) + 2cosy (5.35)
b4 T~ 2¥siny (v, + £) - ¢ Cpo (5.36)

T w g K '
na = COS Y — [(B%E (”’ g . + ]‘) 8D8h ) .P% + v;na:c2 + U;;za:rv} ’l)SiIl‘y (5 37)

2T £(Vpnazv + g) cosy '

Doz + X siny (v!, + £

6= —2 9 ( ) (5.38)

T-Dlper + Dias

Here ng is obtained from %g =0, ny solves A, = 0 in the singular case ’constraint (5.10)

active, Ay = 0, Ay # 0’ (case 6b below), ny is implied by C; = 0 with § = 1, and ns
is required for te singular control case 11b. The expression 41 stems from C; = 0 with
N = Nmaz. Then the different possible control logics are as follows (a derivation of the
results stated here is given in chapter A of this report):

case 1: constraint (5.10) not active, Ag < 0, ng € [~ ez, +Nmaz):

é=1
n = ng
o =0
02= =Ap (T = D+ Dpaz) - (5.39)
o3 =20
o4=0
p=20
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case 2: constraint (5.10) not active, AE < 0,19 < —Npaz:

6=1

n = —Npmaz

o1 =0

02 = =Ap (T = D+ Dynas) 7 (5.40)
oH

g3 = 5

o4=10

pnw=0

case 3: constraint (5.10) not active, AE < 0, np > Nmay:

6=1
N = Nmax
gy = 0
gz = —/\E(T_D+Dmax)$)‘7 (541)
03 = 0
oa = OH
1T On
p=20
case 4: constraint (5.10) not active, Ag > 0, A, > 0:
6=0
n = —NMypaz
v
gy = /\E(T—D+Dmaz)_w—
g9 = 0 (542)
_an
7= Bn
04 = 0
p=0 (5.43)
case 5: constraint (5.10) not active, Ap > 0, Ay <0:
§=0
N = Nmax
v
gy = AE'(T—D“'Dmaz:)V_V‘
oy = 0 (544)
g3 = 0
a OH
4=~
on
p=0 (5.45)
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case 6: constraint (5.10) not active, Ag > 0, A, = 0:

In this case the controls are not determined uniquely by the Minimum Principle. Pointwise
occurrence of this situation can be ignored. Assuming that A\, = 0 on some non-zero time
interval yields control n after differentiating twice (singular control of first order). Two
cases have to be distinguished, namely A, = 0, and Az # 0O
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case 6a: constraint (5.10) not active, Ag > 0, Ay =0, and A; = 0:
Then necessarily Ay # 0 and

6=0

Ay =0

cosy =0

n=20

01 = Ap (T = D + Dmaz) 3 (5.46)
o2 =0

o3 =0

o4 =10

p=0 (5.47)

The Generalized Legendre-Clebsch Condition (see Appendix 6) implies

siny >0 if AL <0
siny <0 if A, >0

case 6b: constraint (5.10) not active, Ag > 0, A, =0,and Ay #0:

6=0

Ay =0

Ap — Aztany =0

n=mny

01 = M5 (T = D+ Dyna) 3 (5.48)
o =0

o3 =10

o4 =0

p=0 (5.49)

The Generalized Legendre-Clebsch Condition implies Az < 0.

The case Ag = 0, A, = 0 can be excluded. The case Ag = 0, A, # 0 leads to first
order singular control in throttle § which is rejected as non-optimal by the Generalized
Legendre-Clebsch Condition. case 7: constraint (5.10) active, Ag + p€ <0, A, <0:

6=1
n = n;
o1 =0
oy = — (/\E‘*'H%) (T—D+Dmax)ﬁv; (5.50)
o3 =10
o4 =0
Mg,

(5.51)



case 8: constraint (5.10) active, Ag + p€ < 0, A, > 0:

=1
n=-—njy

(71:0

o2 </\E+p )(T D+ Dpac) 1 (5.52)
0'3—0

0'4:0

4 Ap (5.53)
T n2Kow By ‘

The case ’constraint (5.10) active, Ag + uZ > 0, A, # 0’ can be excluded. The case
‘constraint (5.10) active, Ag + € = 0, A, = 0’ is treated later. case 9: constraint (5.10)
active, Ag + p2 =0, A, < 0:

6= (51 (from C] = 0 with n = nmaz‘)

N = Nmaz
o =0
a2 =0 (5.54)
o3 =10
g
04 = —/\7;
§= ~/\E$ (5.55)

case 10: constraint (5.10) active, Ag + pf =0, A, > 0:

6 = &; (from C; = 0 with n = n,,)

N = —Nyazx

a; = 0

o3=0 (5.56)
g

g3 = /\7;

04 = 0
v

o= _/\EE (5.57)

case 11: constraint (5.10) active, Ap + u2 =0, A, = 0:
In this case the controls are not determlned uniquely by the Minimium Principle. Point-
wise occurrance of this situation can be ignored. Assuming that Ay = 0 on some non-zero
time interval

additional information has to be obtained from differentiating identity A;amma = 0
(singular control). Two cases have to be distinguished, namely A, = 0 and Az #0.
case l11a: constraint (5.10) active, Ag + u€ = 0, A, = 0, A, = 0 : In this case we have two
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possible control logics, namely

Doz + 25 sin 7y (Vpnar + 2)

= T Dl + D

Ay =0

siny =0

n = COS Y

o1 =10

o =0

o3=0

g4 =0

It=—f\EP-
g

and

5o Doz + 25 sin 7y (Vpngz + 2)
T — D+ Doy

Ay =0

/

/\h+)\3(1+zm;—zv)=0

siny =0
n = cosvy
o1 =0
g2 =0
o3 =0
o4 =0
#=—)\Eg
g

(5.58)

(5.59)

(5.60)

(5.61)

Here, equations (5.58) represent singular control of first order (in control n). Equations
(5.60) represent a case of infinite order singular control. In this case, control n is undeter-

mined. Every control function of time n(t) is admissible, as long as it leads to state/costate
time histories that satisfy all boundary, transversality, and switching conditions.

case 11b: constraint (5.10) active, Ag + € =0, A, = 0, and A; # 0:

Then necessarily cosy # 0 and

6=

Dimaz + 2 siny (Vo + 2)
T — D| + Dpor

n as below

Ay =0

AL — Az tan7+)\E (1+

/
n= (1—M)cos7
g
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vmaz‘

v):()
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0'1:0

09 = 0

03 = 0

g4 = 0
v

f=—Ag- (5.63)
9

The Generalized Legendre-Clebsch Condition implies A, < 0. case 12: constraint (5.10)
active, Ag + u £0, A, = 0:
Then necessarily cosy # 0 and

6=0
Ay =0
Dmaz% + vsiny (v:mw + %) =
n = ng (5.64)
o) = (,\E + ,ﬂ) (T = D+ Dpag)—
v w

g, =0
g3 = 0
o4 =0

_ *_’\hv;mi’”:a%’” (5.65)

5.7 Transversality and Corner Conditions

All transversality and corner conditions are given such that the first variation of the cost
function (5.5) J = —z(t) is zero. With boundary conditions (5.11) this yields

Ap = —1. (5.66)

In case of final time ¢; to be minimized (i.e. cost function (5.5) J = —z(ty) being replaced
by J = ty), the associated boundary condition is

H(ty)=1. (5.67)

The Hamiltonian H is continuous throughout the time interval [0, tf]. At any corner
point, say at time t., this yields an optimality condition on the switching time ¢., namely

H(t*) - H(t.™) = 0. (5.68)

Here and below superscripts +, — denote evaluation just right, and just left of the time
under consideration, respectively. At the beginning, say {;, of a state constrained arc
additional conditions are

Co(t1) = 0 (5.69)
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At = A" — %%
W= - i
. (5.70)

A= - loih

where Iy is a constant multiplier. The end, say tz, of a constrained arc is determined
by the continuity of the Hamiltonian. The jump in multipliers (5.70) is implied by the
interior point condition (5.69).

5.8 Supplementary Optimality Conditions

Along constrained arcs we have the sign conditions

o; > 0 on arcs where g; =0,1=1,...,4 (5.71)
a)u 20 _
b) i < 0 } on arcs where Cy = 0. (5.72)

Along singular arcs an additional optimality condition is the Generalized Legendre-Clebsch
condition (see Appendix 6). This condition is already considered in the possible control
logics stated in Section 5.6. The explicit analysis is given in Appendix A.

5.9 Switching Structures

Problem (5.5) subject to the equations of motion (5.13), (5.2), (5.3), (5.4) and boundary
conditions (5.11) is solved for fixed final time (5.12). As a first step only control constraints
(5.14), (5.15) and the state constraint (5.10) are enforced, while load factor limits (5.8),
(5.9) are neglected. The associated switching structure turns out to be
(S1)1-7-11b-7-1
where any number i in the above sequence refers to case i of the possible control logics
listed in Section 5.6). The load factor n = -vlf,- increases rapidly near the final time iy
and reaches a maximum value of approximately n,m,q.. = 56.5886. Mathematically this is
perfectly reasonable, as will be explained heuristically in the next Section. To make the
solution meaningful from an engineering point of view lower values of n,,,, have to be
enforced. Starting with switching structure (S1) this is done by reducing the load factor
limit (5.9) in steps

In| € Pmazy Mmaz = 96, 55, ..., 5.

In the process we observe the following switching structures.

(§51) 1-7-116-7-1 for Nmag € [56.6, <)

(52) 1-7-11b-7-1-3 for nmag € [32.7, 56.5]

(53) 1-7-116-7-1-3-5 FOT Nmaz € [22.7, 32.6] (5.73)
(§4) 1-7-116—9—-7—1-3-5 for nmas € [20.8, 22.6] '
(§5) 1-7—-116-9-3~5 for nmas € [18.2, 20.7]

(56) 1-7—116—-9 -5 fOr Nmag € [5.0, 18.1]
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5.10 Large Load Factors Near Final Time

Figure 5.3 shows the time history of the load factor along the solution without the bounds
(5.8), (5.9), (i.e. Nmaz = 00). It may be helpful to provide some explanation for why the
peak-value occurs at the final time and how the peak-value depends on the boundary
conditions. To this end, suppose the conditions (5.11e), (5.11f), (5.11g) are replaced with

mar h 2
E(ty) = B = “men ) 2(g 2 +hy, (5.74)
h(ts) = hy = 9000, (5.75)
A (t5) =0, (5.76)

L.e. the prescribed final state lies on the dynamic pressure limit and the final flight path
angle is free. Then numerical calculations show that the switching structure associated
with the solution of this problem is given by switching structure (S1) of the previous
section with the last two arcs deleted. Now, if boundary condition (5.74) is replaced by

E(ty) = E; - AFE, (5.77)

for some AE > 0, then, if the load factor is unbounded, the ’optimal maneuver’ for
the aircraft would be to fly exactly as in the solution of the previous case (i.e. boundary
conditions (5.74), (5.75), (5.76) until E(t;) = Ej is reached and then to impulsively apply
a high load factor n — 0o on an infinitesimal time interval [ty,ts+6t4], 6ty — 0, such that
the energy drops instantaneously to the prescribed value E;—AF. By noting that, in the
dynamical equations, the load factor appears linearly in the Y-equation and quadratically
in the E-equation, we expect that along this infinitesimal arc 6 E ~ n26t, while §y ~ nét.
Hence, with n and 6t; such that 6E = —AE we expect 0y — 0 for n — o0, and the
flight-path angle does not change along this arc.
If the final flight-path angle is prescribed at a value different from the natural one, i.e.
(5.76) is replaced by
V() = Yfree + Ay, Ay # 0, (5.78)

Then the dissipation of energy turns into a gradual process extending over a non-zero
time interval and the load factor remains finite. Paradoxically, non-zero A~ results in a
smaller peak value load-factor than does Ay = 0.

5.11 Numerical Procedures

The switching structure, that is, the sequence of different control logics that actually
solves a problem is not known in advance. For a given problem it has to be found by
‘numerical experiments’. Assuming a certain switching structure the state and costate
equations along with the boundary conditions, transversality conditions, and corner con-
ditions implied by the assumed switching structure yield a multi-point boundary value
problem (MPBVP). As an example case a schematic representation of the MPBVP associ-
ated with switching structure (S6) is given in Figure 5.4. By inspection it is clear that the
trajectory can be determined by simple forward integration if all parameters E(0), h(0),
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v(0), £(0), A&(0), An(0), Ay(0), Az(0), lo, At1, Ata, Ats, Aty, Ats are known. Basically,
the numerical problem is to determine these 14 parameters such that all 14 conditions
(numbered 1, .., 14 in Figure 5.4) are satisfied. This root finding problem is solved using
routine ZSCNT of the IMSL subroutine library (version 9.2). In practice, forward inte-
gration causes the associated boundary value problem to be very badly conditioned. A
remedy is to consider f3 as new ’initial point’ and generate trajectories by successively
‘integrating backward and forward, starting at switching time t3, respectively. In an obvi-
ous way this generates a new set of parameters E(t3), h(t3), 7(t3), z(t3), Ae(t3), An(t3),
A, (t3), Az(ta), lo, Aty, Atg, Ats, Aty, Ats along with the conditions numbered 1,..., 14
in Figure 5.4. Noting that conditions 6, 8, 10 in Figure 5.4 can equivalently be enforced
at time 3, three unknowns, say E(t3), An(t3), A,(t3) can be expressed in terms of the
remaining twelve parameters h(t3), ¥(ta), z(t3), AE(t3), Az(t3), lo, Aty, Aty, Ats, Aly,
Ats. While it is only of minor importance that this reduces the number of parameters
and conditions, it is very significant that this substitution ensures that

(i) the characteristics of the singular arc, i.e. conditions 8, 9 in Figure 5.4, are satisfied
along [t2, t3)

(ii) the dynamic pressure limit v — vpmaz(h) = 0 is satisfied along (t1,t4])-

Note that both points hold true even before the root finding process converges. A more
detailed analysis of numerical problems and difficulties associated with optimal control
problems is given in Chapter 2. The software package used to generate the numerical re-
sults stated in this report is presented in Section 2.5. Switching structure (S1) is in some
sense the simplest of the switching structures (S1), ..., (S6) because no control constraints
on load factor n are active. Furthermore, in numerical experiments no other switching
structures could be found for trajectories involving an arc of active dynamic pressure limit
(and no active load factor limit). It is clear that switching structure (S1) can hardly be
found in an ad hoc method by just making an intelligent guess and getting the rest done by
a computer. In practice, the first attempts were to generate solutions with active dynamic
pressure limit that do not involve singular control arcs (of type 11b). When this failed
trajectories were generated by just integrating along an arc of type 11b (singular control
along active dynamic pressure limit). The next problem was how to leave the constrained
arc and enter the free arc. Numerous different switching structures were tried out. In
this process only switching structure (S1) was found to lead to a consistent BVP. A first
guess for a trajectory was obtained by pure backward and forward integration starting at
some point in the interior of the singular arc of type 11b. Starting with this guess solution
(S1) could be found after a number of homotopy steps in which the prescribed initial and
final values of states E, h, v were varied. Introducing the load factor limit n < nmer Was
comparatively easy. The necessary switching structures could immediately be guessed by
analyzing the time history of load factor n. It took the author more than one year to find
switching structure (S1). The other switching structures (S2), ..., (56) were obtained the
same day. What a day!

5.12 Results

As a general trend it is observed that all trajectories consist of mainly 3 phases.
Phase 1: full thrust flight off the dynamic pressure limit (type 1) until dynamic pressure
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limit is reached

Phase 2: rapid descent with dynamic pressure limit active and singular control power
(type 11b) until close to prescribed final altitude.

Phase 3: rapid pitch up maneuver off the dynamic pressure limit with load factor on its
upper limit and thrust first full, then zero.

Below, the lengths of each arc in seconds are given for selected solutions with switching
structures (S1), ..., (S6) (compare (5.73))

(851) 27.622 —0.525 — 30.614 — 0.796 — 0.443 with n,,,, free

(52) 27.618 — 0.525 — 30.686 — 0.536 — 0.104 — 0.530 with 4, = 34
(83) 27.491 - 0.521 — 30.539 — 0.451 — 0.015 — 0.515 — 0.567 with npne, = 23
(54) 27.449 — 0.520 — 30.467 — 0.420 — 0.045 — 0.002 — 0.506 — 0.591 with ez = 21
(55) 27.423 - 0.519 — 30.412 — 0.651 — 0.340 — 0.654 with 7,4, = 20
(56) 26.856 — 0.504 — 29.231 — 2.31 — 1.098 with n,,,, = 10.

For the case of np,q; = 10 (switching structure S$6) time histories for throttle 5, load factor
n, Lagrange multiplier A, and switching function S = AEW + ufy are given in Figures
3.5, 5.6, 5.7, and 5.8, respectively. Figure 5.9 shows the altitude-velocity chart for this
solution.

All switching structures found seem to be of some general nature in the sense that the same
switching structures arise if initial or final coordinates of the trajectory are moderately
changed. In this context trajectories starting at ground level with speed around take-
off velocity have been calculated for prescribed flight times over 200 seconds and final
conditions as in (5.11). For “long flight times” (over 62 seconds for initial and final
conditions as given in (5.11)) the obtained switching structures S1, ..., S6 do not solve the
problem (thrust over-saturates at the beginning of the singular thrust arc). The correct
switching structure for “long flight times” has not yet been found.

5.13 Conclusions

Range optimal trajectories for an aircraft flying in the vertical plane have been synthezised
in the presence of a dynamic pressure limit (state inequality constraint) and a load factor
limit (control inequality constraint). Six different switching structures are obtained with
singular control along state constrained arcs always playing an important role. For long
flight times the control-over saturates at the beginning of a singular arc. For this case the
correct switching structure has not yet been found.
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a;

l

b;

—2.61059846050 102

+7.2082184744510°!

+8.57043966269 102

—3.25219000620 10°

+1.07863115049 10~

+5.72789877344 10°

—6.44772018636 102

—4.57116286752 10°

PSS RO T e ) R

+1.64933626507 10~°

+1.37368651246 10°

Table 5.1: Coefficients for Cpg-Model

I Ci | d;
+1.23001735612 10° | +1.42392902737 10!
—92.9724414419010° | —3.24759126471 1011

+2.78009092756 10°

+2.96838743792 10!

—~1.16227834301 10°

—1.33316812491 10!

+1.81868987624 10~

+2.87165882405 10+1

—2.97239723756 107!

Table 5.2: Coefficients for K-Model
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j=0

j=1

j=2

+0.11969995703 10°

—0.35217318620 10°

+0.60452159152 10

—0.14644656421 10°

+0.51808811078 10°

—-0.95597112936 103

—0.45534597613 103

+0.23143969006 107

~0.3886032381710*

+0.49544694509 103

—0.22482310455 107

+0.39771922607 10

—0.46253181596 10

+0.20894683419 10°

~0.36835984294 10

+0.12000480258 10!

—0.53807416658 10!

+0.94529288471 101

j=3

j=4

j=3

—0.43042985701 10°

+0.13656937908 10°

—0.16647992124 10

+0.8327182657510°

-0.32867923740 10°

+0.49102536402 10

+0.12357128390 104

+0.55572727442103

—0.23591380327 103

-0.30734191752 104

+0.10635494768 104

—0.13626703723 10

+0.29388870979 10°

—-0.10784916936 103

+0.14880019422 10?

[ fi 1
i=0
1=
1=2
1=3
=4
1 =

[ £ |
i=0
7 =
t=2
1=3
1=4
t=5

—0.76204728620 107

+0.28552696781 10!

—-0.40379767869 10°

Table 5.3: Coefficients for Thrust Model
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Figure 5.1: Hodograph for Unrelaxed Problem
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Figure 5.2: Hodograph for Relaxed Problem
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LOAD FACTOR
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Figure 5.3: Load Factor n vs. Time t for nmaz = 00 (switching structure (S1))
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6) v — Upmaa(h) = 0 8}, =0
1) E =38029207| | 7)n* —n~ =0 9)A:.+A5(1+L",¥1m)_x,:an7=o
2)h = 12119.324 ., 11) E = 9000,

{ 3y =0 A = Ag - g 12) h = 942,292
9z =0 D S 13)y = -0.2
)2 = -1 A =25 -l 10)p=0] 14)¢5 - 1, = 60.
cage ] : casel: case 116 case]: caseh:

Co<O Co=0 Co=0 Co=0 Co<0
§=1 §fromC; =0 §fromC, =0 §fromCy =0 §=0
n from n as large n from n as large n from
%;"! =0 as possible §=0 as possible n = Nmae
to t ty 1y ty t
Aty Aty Aty At, Aty

14 parameters: E(0), h{0), 7(0), z(0), Ag(0), An(0), A,(0), A2(0), &y, Aty, Aty, Ats, Atg, Aty

14 conditions: (numbered 1, ..., 14 above)

Figure 5.4: Schematic Representation of the Boundary Value Problem Associated with
Switching Structure ($6)
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Figure 5.5: Throttle n vs. Time t for nyq, = 10 (switching structure (S6))
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Figure 5.6: Load Factor n vs. Time ¢ for n,,,, = 10 (switching structure (86))
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Figure 5.7: Costate A, vs. Time t for npmq; = 10 (switching structure (56))
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Figure 5.8: Switching Function § vs. Time ¢ for ny., = 10 (switching structure (S6))
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Chapter 6

The Generalized
Legendre-Clebsch Condition on
Constrained Arcs
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Chapter Overview
An extension of the Generalized Legendre-Clebsch Condition is obtained for problems with
singular control along arcs with active state or control constraints. This is achieved by
first transforming the Accessory Minimum Problem associated with constrained singular
arcs into an unconstrained singular, linear quadratic problem. In a second step (theorems
and proofs are largely based on Goh’s work [11] ) necessary conditions are derived for
“such singular linear quadratic problems to yield non-negative cost.

6.1 Introduction

In the 1960’s singular control arcs were found to play an important role in many optimal
control problems of practical interest. H.J. Kelley, in 1964, was the first to formulate
second-order, necessary conditions for this type of control (see [17]). In the following
years many authors such as Kelley, Kopp & Moyer [18] and Goh [11] extended Kelley’s
idea to what is now known largely as the Generalized Legendre-Clebsch Condition. To the
author’s knowledge, singular control in the presence of active state or control constraints
has not been treated in the literature.

In Chapter 5 range optimal aircraft trajectories subject to a dynamic pressure limit are
synthesized. The appearance of singular control along arcs with active dynamic pressure
limit has prompted the research that lead to the results presented in this Chapter.

6.2 Problem Formulation

Let us consider the following optimal control problem stated in Mayer form:

i t .
RN C (AR (6.1)

subject to the conditions

(1) = f(z(1), u(t)) ¥ L € [to, ty] (6.2)
z(to) = 20, 2o € R" andty € R fized (6.3)
U(z(ts),tg) =0 (6.4)
c(z(t),u(t)) =0 V't € [to, ty] (6.5)
h(z(t),u(t)) <0 V1t € [to,ty]. (6.6)

Here t € R, z(t) € R", and u(¢) € R™ are time, state vector and control vector, respec-
tively. The functions ® : R**! — R, f : R™*™ — R™, ¥ : R™*! - R* s < n, c:
R*t" — R*¥ and h: R*™ — R*2 are assumed to be sufficiently smooth w.r.t. their
arguments of whatever order is required in this Chapter. (PWC[tg,1])™ denotes the set
of all piecewise continuous functions defined on the interval [tg,%;] into R™ . Conditions
(6.2), (6.3), (6.4), represent the differential equations of the underlying dynamical system,
the initial conditions, and the boundary conditions, respectively. Components of vector
functions ¢(z,u) and h(z,u) , in which control u appears explicitly are called control
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constraints; components of ¢(z, u) and h(z,u) which are independent of u are called state
constraints. As time marches from ¢y to 5 the type of a given component of ¢(z,u) or
h(z,u) may change back and forth between state constraint and control constraint. The
present Chapter does not address switching conditions that have to be satisfied at junc-
tion points between arcs. We are only concerned with optimality conditions that have to
be satisfied along the interior of a given arc. By appropriately choosing the boundaries
71, T2 of an arc [1, 7] it is clear that each component of ¢(z, u) and h(z, u) can be consid-
ered being of the same type (state constraint or control constraint) throughout the time
interval under consideration.

6.3 Minimum Principle

Let us assume that a solution to problem (6.1) - (6.6) exists, that k; = 0 (no equality
constraints), and that along the optimal solution conditions (6.6) are all non-active,
le. are satisfied with strict inequality. Then (see Bryson & Ho [5], Lee & Markus [24],
Neustadt [33]) there is a constant multiplier vector ¥ € R?® and a time varying multiplier
vector A(t) € R™ which is non-zero for all times ¢ € [to, ;] such that

H(z, X, u):= AT f(z,u) (6.7)
: oH
AT = ~5 (6.8)
89 o
AT = 52(1;) + ”Taz(tf) (6.9)
Halty), Aty), ) = =57 =T G- (6.10)

At each instant of time the optimal control u* satisfies (Minimum Principle)

u* = arg min H. (6.11)

u€R™

By virtue of the assumed smoothness of f(x,u) equation (6.11) implies

oOH
5o =0 (6.12)
2H
57 O 5, >0 Véu€R™. (6.13)

ou?
6.4 Singular Control and Goh’s Necessary Condition

A necessary condition for optimality directly implied by the Pontryagin Minimum Prin-
ciple (6.11) is given by

OH
Sl =0 (6.14)
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In the regular case the second derivative matrlx H has full rank

9*H
rank (W) . =

and all components of the optimal control u* are determined explicitly through (6.14), pos-
sibly in conjunction with the convexity condition (6.13). The singular case, rank (6 H )l <
u*

(6.15)

m, occurs typically if some control component, say u;, appears only linearly in the Hamil-
tonian. Then the associated component of the gradient % H is a function of z and A only,
and can not be influenced by the choice of controls. Assumlng that control u; is in the
interior of its allowed domain, i.e. no control constraint is active on control uj, condition
(6.14) implies that % =: §(z,)) = 0 has to be satisfied. Implicitly, this condition deter-

mines the control component u; through its derivatives %S(z, A)=0, mS(z A) =0,
and so on.
In this Chapter we use the following more general definition of singular control.

Definition 6.4.1 An arc 1y, 73] is called singular of degree m* if there is a smooth func-
tion § : R?" — R™' of z and X such that Vt € |11, 73] the optimal control u™ is determined

by

0H
= 0 (6.16)
O*H
507 >0 (6.17)
S(z,A)=0 (6.18)
and )
0*H .
rank <W) =m-m (6.19)

is satisfied along the solution of (6.16), (6.17), (6.18).

Note that S does not depend explicitly on u so that differentiation of identity (6.18)
w.r.t. time t is well-defined and can be used to obtain additional conditions on control
u. Assuming that the classical Legendre-Clebsch condition (6.13), (6. 17) %—JQ{— >0is
satisfied, we find

’H | R Om—m* m*

ou? - 0m‘,m—m‘ 0m‘,'m'

] , Ry e RmmImomt (6.20)

possibly after a permutation of the components u;, 2 = 1,...,m of control vector u. Along
an extremal z*(t), A*(t), u*(t), ts*, v* of (6.1), (6.2), (6. 3) (6.4) the second variation of
the augmented cost functional

J = q)(.’lt(tf),tf) + I/T\I’(:E(tf),tf) + ‘/:] /\T(f(a:, u)— &) dt (6.21)
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is given by (see results obtained in Appendix B)
ty
Jo=7+ wdt (622)
to
where

9% 9%y 020 0%y
_ g T T OV T T
v = dzy (az(t,)z tv 6m(tf)2> des+2dzy (az(tf)atf +v ax(tf)at,) dis+

0?9 o’V
T T
— — ] dt .
+ dt; (atf2+” atf2)df (6.23)
O*H *H O’H
= b2T—— 6z + 2627 sul == 6u. 24
w = bz 522 z+26z 8x3u6u+ w5y bu (6.24)
Here the variation éz(¢) of state z is the solution of
- _Of of _

and the variation dx; of the final state is given by
dry = 8z(t7) + f(="(t}), u™(t})) dt; . (6.26)

The variation éu of control u is arbitrary, and all matrices are evaluated along the solu-
tion candidate z*, A*,u*. Applying Theorem 6.8.2 of this report to the second variation
immediately yields the following result.

Theorem 6.4.2 Let the optimal solution u* corresponding to the solution of (6. 1), (6.2),
(6.3), (6.4) be singular of degree m* on some arc [y, 73], i.e. equations (6.16), (6.17),
(6.18), (6.19) hold for all times t € [r1,7)]. Then a necessary condition for u* to be
optimal on [1y, 73], are the conditions

(i) the (m — m*) x (m — m*) matriz function of time Q,B; is identically symmetric, i.e.

Q2B2 = By Q5T Vi € [to, 1] (6.27)

(11) if Q2 B2 1s identically symmetric, then

Ry = [ g; 12’-:] >0 Vi€ [to, ] (6.28)
where
Ry := B,TQ\T - Q,B (6.29)
R3:= B,"P,B, - %(sz) - BTQ,T (6.30)
Bs:= AB, — B, (6.31)
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Here matrices Rl € Rm_m.’m—m',Pl € Rn,n’Ql c R"m.—'m,"'n,’Q2 € Rm“’n, A € Rnnn,Bl €
Rn'm_m.’Bz € Rn.m" are deﬁned by (620) and

?H

Pri= 5, (6.32)
Q1| _ 0*H

[ o ] = o (6.33)

A= g—ﬁ-, (6.34)

[ B, B | = %{;, (6.35)

respectively, and are evaluated along the extremal z*, X", u*.

6.5 Constrained Arcs

A constrained arc is a non-zero time interval, say [ri,T2], along which a fixed set of
components of constraints (6.5), (6.6) is satisfied with strict equality. Let this set of
constraints be given by d(z,u) = 0, d : RM™ — RM+k k4 k) > 0, where the first
k; components of vector function d are all constraints (6.5) and the last k!, components
of d are those components of (6.6) that are active’. For components ¢ of d(z,u) which
represent state constraints (i.e. d(z,u) is independent of control u), the order of the state

constraint is defined as the smallest integer p; € N such that,%',f d;(z) contains control

u explicitly, i.e. B%%,‘.—d;(z) # 0 on [ry,72). (If p; changes on [r1, To] then consider a new

interval [r], 7] C [r1, T2] small enough such that p; remains constant along [7{,73]). Then
di(z) =0ont € [r, ) (6.36)

is obviously equivalent to
d;© =0att=m

: 6.37
dsp‘_l) =0att=m ( )

dsp‘) =0ont € [mn,r)

Here superscript (j) denotes the j-th total time derivative. By virtue of this equivalence
the effect of all constraints d(z,u) in the interior of any constrained arc is completely
characterized by a vector valued function g : R*™ - RP, p = ky + K, with

g(z(®),u(t)) =0ont € (11, 72), (6.38)
as long as some set of ”initial conditions”
((z(t))=0att=7 (6.39)
is satisfied. Now assume

rank (@ﬁa%’i)) = pVte€|[n,nl (6.40)
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Then, without loss of generality, control vector u can be separated as

uf = (o7, wT), v e R™ P we R? (6.41)
such that P
rank(g(—za’;;ﬂ) =p (6.42)

(i.e. 8—9(;—;’:’—'“2 1s non-singular) and the Implicit Functon Theorem [2] implies the existence
of a smooth function
w = W(z,v) (6.43)
such that
g(z,v,W(z,v)) =0 (6.44)

is an identity in z and v.

6.6 Reduction of Constrained Arcs to Unconstrained Arcs

By the Principle of Optimality (see Lee & Markus [24]) every subarc of an optimal trajec-
tory is an optimal trajectory between its end points. Hence, along a constrained arc, say
t € [r1, 7], the formalism of (6.7) and (6.8) and the Minimum Principle (6.11) can still
be applied after substituting (6.41) and (6.43) into the equations of motion (6.2). With
the Hamiltonian (6.7) written in the form

H =) f(z,v,w) (6.45)
and with
d- [ & £ ]
dx - dry? ' dzn
aw, oW,
B Oxp
: 3 3 ) X
:[8371, ,ai—n]-#[m, --,gw—p] : : (6.46)
Wy oWy
oz, Y Bxp
d- _ [ & L ]
dv - dvl’ ? d‘Um_p
W, W,
v1 Ovm—p
3. 3. 8- 2- .. .
= [ Bopr o 3om—p ] +[ Buy® o % ] : .. : (647)
oWy oW,
duny > Oum_p
this yields on [rq, 73]
3T _dH(z, A, v, W(z, v))) (6.48)
dz
Y= in H(z,v,W(z,v)). 4
v* =arg i (z,v,W(z,v)) (6.49)
Again with the assumed smoothness of all participating functions (6.49) implies
dH (z,v,W(z,
(2,0, W(z,0)) _, (6.50)

dv
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6UT d2H(.’E, v, W(:E’ ’U))
dv?

In complete analogy to the unconstrained case we have

§v >0 Véve R™? (6.51)

Definition 6.6.1 An arc[ry, ] with constraints (6.38), (6.39) is called singular of degree
m* if there is a smooth function § : R2" — R™ of z and X such that along [11,T2] the

optimal control v* 1s determined by
dH 0

e (6.52)
d*H
— > .
7 20 (6.53)
S(z,A)=0 (6.54)
and )
rank daH) _ m-p-m’ (6.55)
dv?

is satisfied along the solution of (6.52), (6.53) and (6.54). The differential operator j—v is
defined by equations (6.40) through (6.47).

As before, note that S does not depend explicitly on any controls so that differentiation of
identity (6.54) w.r.t. time ¢ is well-defined and can be used to get additional conditions on
control v. As in the unconstrained case, (6.55) along with the Legendre-Clebsch condition
(6.53) implies the existence of a matrix Ry such that

d2H _ Rl 0m—p-—m‘,m
d’U2 - Om‘m_p_m‘ Omt’m.

. Ry € RmPTmImopmmt (6.56)

possibly after rearranging controls v. For the second variation to be non-negative on
[r1, T2] Theorem 6.8.2 yields the necessary condition

Theorem 6.6.2 Let the interval [t1,72] be a constrained singular arc of a solution to
problem (6.1) - (6.6), i.e. with Definitions (6.41) and (6.45), (6.46), (6.47) equations
(6.42), (6.43), (6.44), and (6.48), (6.52), (6.53), (6.54), (6.55) hold true on [r1,72],
respectively. Then a necessary condition for v* to be optimal on [r1,72] are the conditions
(i) the (m—p—m*)x (m—p—m*) matriz function of time Q+ B, is identically symmetric,
ie.

Q2B; = BT Q2" Vi € [to, 1] (6.57)

(ii) if Q2 B; is identically symmetric, then

| R RT
R4 := [ R, Rs ] >0 Vit € [to, ty] (6.58)

where
Ry := BT Q1T — Q2B4 (6.59)
d

R3 = BQTP1B2 - E(QQBQ) - BgTQQT (660)
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B3 = ABz - B2 (661)

Here matrices Ry € R™-P=m"m=p=m’ P ¢ R™R Q) € RM=P—mm Q) ¢ ™0 A ¢
R™", By € R*™~P~™" B, ¢ R qre defined by (6.56) and

2
P, := %, (6.62)
Q] &H
[Qz } = (6.63)
d
= é, (6.64)
[ B, B, ] = 21(%’ (6.65)

respectively, and are evaluated along the extremal z*, \*, v*.

6.7 Express Unknown Quantities in Terms of Known Quan-
tities
Equations (6.48), (6.51) - (6.55) seem to require the explicit knowledge of the functional

dependence w = W(z,v) . This may not be available, as it may not be possible to solve
(6.38) analytically for w. Differentiation of identity (6.44) w.r.t. z and v yields

-1

W) W, 891 9m 891 9g1
EED) EEN Jwy awp oz, ot dTn
=- : . RS (6.66)
oW, oWp 99p d9p 3g9p Jgp
az, N duy Jwp EEN 3zn
aw, oW, ag, 8g1 171 1 B¢ O
I Ovm—p dwy dwp duy Ovm_p
: L= P (6.67)
oWy Wp 9gp g 9gp 9gp
Juy *t Bum-p Jun wp dui " Gum—p

respectively, and the differential operators j—;, 4, defined by (6.46), (6.47) take the form

T I

d_.Z'— = dzy ? * dzrp dry? 'Y Bzy,

39 391 171 r 5 391
dun awp EEN CEN

3. 3 .. . . .

R 3 S (6.68)

g9p. 99 99p B9p
3w1 Wy 61‘1 81‘71

d- _ 1 4. & 1 _[ 8. 9

% - duy ? ’  dum—p - Jvy ! ’ Jum_p
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29 %91 17l [ 2m _da1
dun Qwp duny vm—p
3- 9- . . . . . .
—_— (7971, seey '87}] : .. : : . : . (6-69)
Sgp O9p 99p 2%
dun Bwp L RN Ovm—p
Also define
g1 o 77T aH
Hi dun dwp 1 dwy
sl==1 ¢ . I (6.70)
5 5 oH
Hp é_gﬁ_ ’8_5;% . duwp
Then equation (6.48) can be written as
: oH dg
M= = -T2 6.71
oz " bz (6.71)
and equations (6.50) and (6.70) can be restated together as
H
on + 99 _ . (6.72)

Jou ﬂau

The non-singularity of matrix g;% in equations (6.66), (6.67), (6.68), (6.69), (6.70) is guar-
anteed by assumption (6.40), (refK-e 5.7). It is clear that also higher order derivatives
can be treated in this way by successively applying the differential operators % and f—v
stated in (6.68) and (6.69), respectively. Hence it is possible to test the optimality con-
ditions stated in Theorem 6.6.2 without explicit knowledge of the functional dependence
of w = W(z, v) defined by (6.44). Stating general expressions would be lengthy and
unnecessarily confusing without providing further insight. In practice it is recommended
to perform all necessary operations step by step, simplifying expressions in every stage as
far as possible. The classical Legendre-Clebsch condition (6.51) can be restated as

8*H T3 82H T 3%
61)’11[]’ (ﬂ)T ] |: ——UT-*-F’ @g 8v8w+y’ Fydw } |: B{V ]61)20 Y §v € R™P,

v 3 9%g 2 2 oW
? Bw(}'){v+#T3w8v g_wlg-JruT%% dv
(6.73)
With Definition (6.41) and assumption (6.42)
dg
is equivalent to
dg\ ! g
611) = — (@) -(,)—vév,
or with (6.67)
bw = %—T&v.
Hence
T
{&;T [I, (3—W) ] | 6v € Rm"’} = {[mT,awT] | §v € R™P, 6w = Q—VKM}
v ov

83



= {[MT € R™|| g%éuz 0}

and condition (6.73) yields the well-known result

2 2
sul [‘?):2{ + NT%} bu >0V 6ue R™ satisfying 3—3511 =0. (6.74)

6.8 Singular Linear-Quadratic Optimal Control Problem

Definition 6.8.1 Let problem (*) be defined as

min (6.75)
u1 €(Lalto,tf])™*, u2 €(La[to tg])m—m"
ty
Jy = “)!(:L'(tf),tf) + / wdt
to
T T, 71| & T, ]| 1 O (O
w:==z P1:c+2[u1 , Ug ] [Q'z :z:-{-[ul , U3 ] [ 0 0] [uz]
subject to
z = Az + Byu; + Byu,, I(to) =0 (676)
Y(z(ty),ts) = 0. (6.77)

Here the matriz functions of time
RieR™™ R, >0

Ql € :Rm‘,n,Q2 € Rm—m‘,n
Bl € R‘n,m‘,B2 € Rn,m—m'
PeR™™, P =P
AeR™™,

are assumed continuous and By, Q; are assumed continuously differentiable. The func-
tions v : R™1 = R, (z(t5),ts) = v(z(ty),t;), ¥ : R o R* s < n, (z(tg),tf) —
Y(z(ts),ts) are assumed smooth and satisfy 4(0,0) = 0, ¥(0,0) = 0. For all k € N
(Lalto, t5])* denotes the Hilbert space of all quadratically integrable functions f(t) from
the interval [to, 1] into R*.

Theorem 6.8.2 A necessary condition for [z(t)T, uy (1)T, ug(t)T] = [0, 0, 0] Vt € [to, t/]
to be an optimal solution of problem (*) is that

(1) the (m —m*) x (m — m*) matriz function of time Q,B, is identically symmetric, i.e.

Q2B2 = By Q2T Vit € [to, 1] (6.78)
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(i) if Q2 B2 is identically symmetric, then

R, R)T
= >
Ry [ R, Rs ] >0 Vte [to, tf]

where
Ry = BT T — Q2B

d
Rs:= BT P B, - a(Qsz) - BsTQ,T

Bs:= AB, — B,

(6.79)

(6.80)
(6.81)

(6.82)

Proof: The proof is adopted from Goh [11] and, for convenience, is restated here in slightly

modified form.
Introducing the matrices

0 0 0]

R = 0 R1 0 € Rn+m'+(m—m'),n+m‘+(m—m‘)
[0 0 0]
[0 0 0]

Q — Ql 0 0 € Rn+m'+(m—m'),n+m‘+(m—-m‘)
| Q2 0 0]
P, 0 0]

P = 0 00 € Rn+m‘+(m——m'),n+m‘+(m—m‘)
0 0 0|

and defining the new state vector 7 € Rt +m-m?) by
n0) = [ m@T, wO)F )" |

= [ z(t)7, ftto ul(T)dTT, ftto 'lLQ(T)dTT ]

problem (*) can be restated in the form
min
[u':lrvugT]E(Lz[to’t!])m""(m—m‘)

t! » - .
Jy = y(m(ts),ty) + /t n? Py + 207 Qn + 7 Ri dt

0

subject to the state equations

m = Am+ Biup + Bauz
2 = w

f]3ZU2
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the initial conditions

m(to) = 2o
m(t) = 0
m(to) = 0

and the boundary conditions
W(’h(tf), ty) = 0.
Now define 7 by the regular transformation

n1=Vnp
where
I, 0 - B,
Vie | 0 I 0 | e RomHmomt)nimtsimome)
0 0 T

Then we have
20" = (a1, 75, 7]
T
= [ (z(t) — B, ftto uz(7)dr)T, ftto uy(r)dr, ftt, ug(7)drT ]

and problem (*) can be rewritten as

min . . Jz
(ul, uT1€(Lafto, tg])m* +(m—m*)

ty . ) )
Ja = 1(M(ts) + Ba(ty)i(ts), 1)) + / T Pi + 277 Q7 + 77 Ri dt

to

subject to the state equations

T = Afi+ Biuy 4 (AB; — By)i3

M = w
TLIa = U2
the initial conditions
m(to) = zo
T2(to) =
Ma(to) =

and the boundary conditions
V(7 (ts) + Ba(ty)ma(ts), ) = 0.

Here the old matrices R, @, P given by (6.83) - (6.85) are replaced by

0

R .= Rl
0

o oo
oo o
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(6.93)

(6.94)

(6.95)

(6.96)

(6.97)

(6.98)

(6.99)

(6.100)



0 0 0
Q=G 0 b, (6.101)
Q2 0 Q2B
P 0 P B,
P=| 0 0 0 . (6.102)
B,TP, 0 B;YPB;

In the so-transformed problem 7j3(t) = u2(t) appears only in the bilinear forms 2?)5@2171
and QﬁgQngﬁg. Integrating by parts, employing state equations (6.97) and assuming that
QB3 is identically symmetric it follows that

t! IS _ _ _ |t
t 273 Qo7 dt = 273 Q27 |¢
0
ty . . <
- 27T Gy + 201 Q2 Bafly + 273 Q2 AT + 273 Q2(ABy — B2)7a dt (6.103)
0
and
ty -T _ B Rt ty B d B
/t 2713 Q2 Bafiadt = 73 Q2 Baia 1) —/t nga—t(Qsz)ns dt. (6.104)
4] 0

Hence problem (*) takes the form

min 2 (6.105)
[u,T,uzT]e(Lg[to,t,])M‘+(m—m‘)
t ¢
Jo =2 ﬁ:{QﬁhIt: + 712 Q2 B2l t: +
_ _ ty _ _ T n_ . 2T
+ (i (ty) + Ba(ts)ma(ts), tr) + /t 7T Pi+2n Qi+ 7 Rndt (6.106)
0
subject to the state equations
';71 = A’l_h + Blul + (AB2 — Bg)f]g
N, = (6.107)
773 = Uz
the initial conditions
m(to) = =o
fa(te) = O (6.108)
M3(to) = 0

and the boundary conditions
Y(71(ty) + Ba(ts)ms(ty),t5) = 0. (6.109)
Here the old matrices R, Q, P given by (6.100) - (6.102) replaced by

0 0 0
Ri=|0 R 0 (6.110)
0 0 0
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0 0 0

Q=] Q1 0 Q1B+ B7Q,T (6.111)
Q2 0 Q2B
P, 0 P B,
Pi= 0 0 0 . (6.112)

ByTP+2Q2+2Q24 0 B,"P By + £(Q2B3) + 2Q2(AB, — By)

Again defining a new state vector by
[#(®)7, o()7]

= [0, 20, 7T, o(7]

o [173", il (/t:f 7‘73(r)dr)T (/t:f uz(T)dT)T}

= [ (x(t) - B f; ’U.2(T)dT)T , (ftf] ul(‘r)d‘r)T , (fti) Ja Ug(O’)dO’dT)T , (f:o Uz(T)dT)T ]

(6.113)
problem (*) finally takes the form
min J2 (6.114)
[u?,u{]E(Lg[to,t]])m""(’"—m')
2 = v(t) T Qaiy (1) + v(ts)TQ2Bav(ty)+
= oy 2z 2T -
+ (M (ts) + Ba(ts)o(ty), ty) + /t (7" P+ 27Q7 + 7 Rij) dt (6.115)
Q
subject to the state equations
7;—71 = A1=71 + Byuy + (AB2 - Bg)’l)
Ty = w (6.116)
T3 = v
o= U9
the initial conditions
m(to) = zo
na(te) = 0 (6.117)
M3(to) 0
'I)(to) = 0
and the boundary conditions
V(7 (ts) + Balts)o(ty),ts) = 0. (6.118)
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Here the matrices P, @, R are as follows

[P, 0 0
Pi={0 00 (6.119)

LO 00

0 00
Q=@ 00 (6.120)

| Q3 0 0

0 0 0
R:=|0 R, RY (6.121)

0 R, Rs

where
Ry = B QT — Q2B (6.122)
d

Ry := B] P\B2 — —(Q2B2) - Q283 — B Q; (6.123)
Qs:= BI Pl - Q2A - Q2 (6.124)
B3 := AB; — Bs. (6.125)

In this problem control u, is “free of charge”. Note that u; does not appear anywhere in
the cost function J; in (6.115). Furthermore, in the right-hand side of the state equations
uy appears only in the expression v = ug. Hence, on every interval [t), t1 + €] C [to, ts],
¢ > 0, state v(t) can be changed from any ¢; € R™ ™" toany c; € R™™™ (i.e. o(ty) = c1,
v(ty + €) = ¢3) and the penalty in cost is at most of the order e. This implies that the
status of v can be raised to the status of a control. Let ¢* € R™ ™" be the optimal value
of v(ts) consistent with the boundary conditions (6.118) (the existence of a solution to
problem (*) defined in Definition 6.8.1 implies the existence of such a c¢*), then problem
(*) can be rewritten as follows:

(6.126)

min
fuT, vT)€(Lalto tg])™" +H(m—m")

. = = - b oo . 2 2T
Jo = ¢ TQamy (ty) + 7(Ma(ty) + Ba(ts)e™sty) +/t (nTPn +27Q7 + 7 Rn) dt (6.127)
0

subject to the state equations

m = A7:71+Blu1+(AB2—Bg)v
M = w (6.128)
Ny = v
the initial conditions
M(to) = %o
no(to) = 0 (6.129)
7:73(t0) =
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and the boundary conditions
Y(i(ts) + Ba(ts)c", t5) = 0. (6.130)

Here matrices P, ), R are given by (6.119) - (6.121). Now the classical Legendre-Clebsch
condition implies that necessarily

R, RT
> 0. .
[Rz RS}_O (6.131)

This proves (ii) under the assumption that (i) holds true, and it is left to show that indeed
(1) Q2B2 = BJ Q] Vt € [to, 1]

Assume this is not the case. Define B,* ¢ R»™" B,** ¢ Run-mt-m™ 0 ¢
Rm",n, Q2’“ € Rm—m'—m”,n’ by

Q| ._
[ o0 } = Q, (6.132)

(B3, B3] := By (6.133)

where m** > 0 is the smallest possible integer such that the (m—m*—m**)x(m—m*—m**)
order submatrix Q3*B3* of

_ | @iB; QiB3y

is identically symmetric. Then by construction the nonsymmetry of ¢J; B, implies
Q3" B3 — B3*TQ37 # 0 for some t € [to, 1] (6.135)

Now applying (ii) of the Theorem on problem (6.87) - (6.91), with matrices (6.83) - (6.86)
replaced by

0 0 00
O Rl 0 0 n+m‘+m“+(m—m‘—m"),n+m'+m“+(m—m‘—m")
0 0 0 ol€ER (6.136)
0 0 00
0 000
Ql 0 0O n+m‘+m"+(m—m’—m"),n+m‘+m"+(m—m'—m“)
' 00 oCR (6.137)
;* 000
0 00
O 0 0 0 n+m‘+m“+(m—rn.‘—m"),n+m‘+m“+(m—m'—m")
0 0 0 0 €R (6138)
0 0 00
= In, ~B,, -B}, -By ] € R Hm Hmom —me?) (6.139)
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@ = [ —A7 07 07 0 ] € Rn,n+m'+m“+(m—m'—m") (6'140)
T - T *K T
i) = [ 20, (ffu)dn), (L us(r)dr), (i us(r)dr) |
€ RLAHmSHm T (mom —m*) (6.141)

implies that
‘ Rl Om‘,m" R;T

R4 := 0m“,m‘ Om“,m" RE*T 20 Vie [to, tf] (6'142)
R; R R3
where
(13, By = BT (@7, @37] - @5 [Bu, B3
— [B;*TQIT _ QZ**Bl’ B;*TQQ*T _ Q2**B2*] )

Hence

Ry = B TQT - Q3B (6.143)
and

Ry = B, TQ*T — Q3 B;. (6.144)

Now the positive semidefiniteness of R4 implies that all 2 x 2 order submatrices of the

form
0 (R2")pq
(R2")pq (R3)qq

This implies —(R2™*)pe > 0 V¢ € [to, ty] so that necessarily

>0 Vt € [to, t5]- (6.145)

Ry =0 Vte [to, tf]. (6.146)

But now (6.144) and (6.146) contradict the assumption (6.135). Hence assumption (6.135)
is wrong and @2 B, is identically symmetric.
g-e.d.

6.9 Example

Examples for the application of the Generalized Legendre-Clebsch Condition to singular
control along state/control constrained arcs can be found in Appendix A. In Section A.5
the results obtained in this Chapter are applied to the singular control cases in the aircraft
range optimization problem treated in Chapter 5.
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Chapter 7

Touch Points for First Order
State Inequality Constraints

92



Chapter Overview
The appearance of touch points in state constrained optimal control problems with general
vector-valued control is studied. Under the assumption that the Hamiltonian is regular,
touch points for first-order state inequalities are shown to exist only under very special
conditions, stated in Corollary 7.3.4. For state inequality constraints of arbitrary order
the control is shown to be continuous across a touch point.

7.1 Introduction

In optimal control problems state inequality constraints can turn active in two different
ways, namely in form of constrained arcs and in form of touch points. In practice, the
form in which a constraint becomes active (i.e. the switching structure) has to be found by
numerical experiments and involves some kind of “smart guessing”. This time consuming
process can be cut down considerably if certain switching structures can be excluded a
priori. In this Chapter the existing first-order necessary conditions associated with interior
point constraints are used to derive concise new statements. Conditions similar to the
ones derived here have been derived in [31] for the case of a scalar control. In this Chapter
no restriction on the dimension of the control vector is imposed.

7.2 Problem Formulation and Existing Optimality Condi-
tions

Definition 7.2.1 (Reference Problem) Let the reference problem be given as follows:

u(gleirﬁm o(z(ty),ty) (7.1)
i = f(z,u,1) (7.2)
z(to) = zo (7.3)
Y(z(t5),tg) =0 (7.4)
L(z) <0 (7.5)

where z(t) € R"; u(t) € R™; & : R*1 s RY; f: RM™H oy R7; ¥ R R,
k<n; L:R"— R! is a g-th order state constraint, i.e.

i(d’[(z)) { =0 for i=0,1,..,q—1

ou dt £0 for i=gq.

Definition 7.2.2 (Touch Point) Let z*(t), u*(t) be an extremal associated with the
reference problem stated in Definition 7.2.1. Time t; € (to,ty) is called a touch point if
there is some € > 0 such that

L(z(t))=0 at t=1

L(z(t))<0 on te€(ti—¢€t)U (t1,t1 + €) (7.6)

(see Figure 7.1).
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touch point

to tl t!

—— —— o —_— - —

Figure 7.1: Touch Point

Definition 7.2.3 (Notation) In this Chapter, let superscripts (+), () denote evalua-
tion just left and just right of touch point ty, respectively. Ezplicitly, for any function of

time f(t) we define
f+ = lim f(tl +€)a

e>0,e=0

f- lim f(t; — ).

€>0,e=0

Lemma 7.2.4 Assume the optimal solution to the reference problem given in Defini-
tion 7.2.1 has a touch point at some time t; € (to,ts). Then the following necessary
conditions for optimality are obtained from the Minimum Principle (for notation see Def-

inition 7.2.3):

LO@) =0
LW)(z) 0

att =1t
LieN(z) =0

L z,u) >0 onte (t1 —6,11)

L(Q)(-’E,U) <0 onte(t,ti+e¢) } for some ¢ > 0

oL©®) gLla-1)
+) = (A7) — - _
(’\ )_ (’\ ) IO oz lq—l oz
with

lo>0,0;20,..0,_; >0
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HY-H =0 (7.11)

Y= in H a.e.. 7.12
u” = argmin H a.c (7.12)

Here and in the remainder of this Chapter superscript (i) denotes i-th total derivative
w.r.t. time.

PRrOOF: Just apply the well-known first order necessary conditions (see Bryson & Ho [5])-
q.e.d.

7.3 Concise Statements Implied by First-Order Necessary
Conditions

Definition 7.3.1 (Regular Hamiltonian) The Hamiltonian is called regular if u* =
argmin,cy H is unique (i.e. if the Hodograph is strictly convez).

Lemma 7.3.2 At a touch point t; € (to,ts) in the solution to the reference problem
stated in Definition 7.2.1 the following conditions are implied by the conditions given in
Lemma 7.2.4 (for notation see Definition 7.2.3):

At ==ttt =0t (7.13)
lq_l(Lq)_ =0 (714)
l1(LH)T =0. (7.15)

PRrooF:
Equation (7.11) H* — H~ = 0 can be written as

Mt oA f=0.

With (7.9) this implies

oL LYACERY,
AT — e oA =
( fo Jz g1 Oz f A 0
9 L) gLla-1)
-+ _ +_ O e -
AT =1 5 ff— =1l 5n f A™f 0
+ +
A=l (L) ==y (L@)T - A =0
Conditions (7.7) imply (L(l))+ =..= (L(q'l))+ = 0 so that

A ft 1o (L9)T = af =0
AT S =N = 1 (29T
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Now recall that

(LYt <0 (from (7.8)
lg-120 (from (7.10)
Amft=X"f" >0 (from (7.12).
Then
AT [T = AT fT =1, (L)
—_— N
>0 >0 <o
implies

AT =X f =0
l_1(LH* = 0.
Again starting with equation (7.11) HY — H™ = 0 we can write
Mfr_af =0

Now using (7.9) to substitute for A~ yields

oL aLa-1)
+ ¢+ _ + —— T =
AT S (/\ + o 5 T I 5 f/=0
LA oL-1)
s Y S -_  _ - _
A i o e 0
A FY oAt (L(l))_ S (L<q))“ = 0.
Again using conditions (7.7) we find (L(l))_ =..= (L("_l))— = 0 so that

DR A L iy S (L(q))" =0

PR AN L ly_1 (L(Q))_

Now recall that

(LY~ >0 (from (7.8))
lq1 20 (from (7.10))
AMfH—Atf~ <0 (from (7.12)).
Then
atft oAt =g (L@
—_— o~ ——
<0 >0 >0
implies

/\+f+ _ /\+f_ =0
li_1(L@) =o0.

(7.16)
(7.17)

(7.18)
(7.19)

Observing that equations (7.16), (7.18) in conjunction with the continuity of the Hamil-

tionian (7.11) imply (7.13) completes the proof.

q.e.d.
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z3
2" = f(z(tr), u™(ty))

=)(t)

- A(t)

- 2]

Figure 7.2: Optimal Control Located in a Corner Point of the Hodograph

Corollary 7.3.3 Let t; be a touch point. If H(t1%) or H(t,7) is regular then the control
is continuous across ;.

PRrooOF:
Without loss of generality assume H(t;~) is regular. Condition (7.13) of Lemma 7.3.2
implies
ATfr=ATf.
By definition of regularity of the Hamiltonian (see Definition 7.3.1) this immediately
implies
ut =u™. (7.20)

q.ed.

Corollary 7.3.4 Consider the reference problem stated in Definition 7.2.1 with state in-
equality constraint L(z) < 0 of order ¢ = 1, 1.e. %% # 0, (meaning that %% is not the
zero function). Let t; € (to,ts) be a touch point (see Definition 7.2.2) and assume that
either H(t;t) or H(t;7) is reqular (see Definition 7.3.1). Then only the following three
cases are possible:

a) (trivial case) lo = 0, i.e. the touch point t; is a natural touch point.

b) I > 0 and the Hodograph {z € R"| z = f(z(t1),u) for some u € R™} has a corner

point at time t; and u*(t,) is located in that corner point (see Figure 7.2).

c)lo>0and a%%f—

u=u*, t=t
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ProorF:
a) Assume [y = 0, trivial.
b, ¢) Assume lg # 0. Then by (7.10) necessarily lp > 0. First let us split up all n-vectors

z, f, Q{;—(}z into two components
4]
T2
_| A
=4
oL oL® /L0
dz | 0z, Oz |

Here subscript 1 denotes the set of all components 7 of the original n-vector for which the
associated state rate fi(z(t1),u) depends explicitly on control u, and subscript 2 denotes
the set of all components j of the original n-vector for which the associated state rate
fi(z(t1),u) = f;(z(t1)) does not depend explicitly on control u.

Now, from Iy # 0, we find A(#;%) # A(t;7). This gives rise to the two possible cases
i) there is no ¢ € R such that A\;(#;%) = ¢ A1(¢17) (case b))
ii) there is a ¢ € R such that A\;(#1+) = ¢ A1(¢;7) (case c))

case b):
In this case the vectors A;(¢;7) and A;(¢;7) have different directions. From (7.12) and
(7.20) it follows that A;(¢1%) and A;(¢;7) are outward normal vectors associated with
two different hyperplanes through the same point 2; = fi(z,«*) in the Hodograph (more
precisely: in the projection of the Hodograph into the “l-plane”). This immediately
implies that the Hodograph has a corner at time ¢; and that the optimal control u*(¢;) is
located in such a corner.

case c):
Assume J ¢ € R such that Aj(#;t) = ¢ Aj(t17). First note that necessarily ¢ # 1.

Otherwise (if ¢ = 1) (7.9) in conjunction with Qa%(]i) # 0 yields lp = 0 which contradicts
the assumption. Hence A1 (#;1) = ¢ A1(¢;7) is equivalent into

Al(tl_) — /\1(t1+)

A7) =
1(t7) l1-¢
and with (7.9) this implies
_ lp oL
M) = e .
i(07) 1—-c¢ 0z (7-21)

Now assume u*(¢;) is not located in a corner point of the Hodograph. Then the Minimum
Principle (7.12) implies that along the optimal trajectory

0H

a0

ty—

()
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or explicitly

=0. (7.22)
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Inserting (7.21) in (7.22) yields

lo [aL(O) (af) ] _o
1-c¢ 81131 au 1 -

#0
Because of the continuity of control u across switching time t; (see Corollary 7.3.3) this
. 1 _B_dL(O) - 0.
implies 30 53| _ue 1=ty 0

q.e.d.
Remarks:

a) Note that the conditions stated in Corollary 7.3.4 b), c) are only necessary for the
existence of a touch-point, not sufficient.

b) Also note that these conditions (except for condition lp > 0) can be tested a priori
without solving a boundary value problem. In this test, additionally conditions

TCI0) Y
dL
“a(t), u(t) —0

r=z* u=u*,t=t;

(see equations (7.7) and (7.14), (7.15) ) can be used.
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Chapter 8

Non-Optimality of the Accessory
Minimum Problem in Presence of
a Conjugate Point
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Abstract

In this chapter, a new proof is given for Jacobi’s "no-conjugate-point” necessary condition.
For a certain class of linear-quadratic optimal control problems it is shown that the
existence of a conjugate point in the interior of the extremal implies the existence of
control perturbations that lead to a reduction in cost. In a well-known way, through the
concept of the Acessory Minimum Problem, this results in a no-conjugate-point condition
for general optimal control problems. Important ideas used in this chapter are adopted
from Breakwell & Ho [3]. In contrast to earlier results, the new proof also applies if the
coefficient functions of time associated with the Accessory Minimum Problem have any
finite number of discontinuities.
Introduction

The Jacobi necessary condition states that an extremal cannot be optimal if it violates the
no-conjugate-point condition. Furthermore, the Jacobi sufficient condition states that,
under certain conditions, an extremal furnishes at least a weak local minimum if no
conjugate points are present (see [5], [8]). Unfortunately, because of its local character
and because of its restriction to weak local minima the Jacobi sufficient condition is mostly
of theoretical importance. In contrast, the benefits of the Jacobi necessary condition for
practical applications are clear.

However, presently all Jacobi testing procedures require the extremal under investi-
gation to be smooth. This condition poses a serious restriction to the results obtained by
Jacobi tests. Typically, conjugate points occur for “long” extremals. Hence, by applying
the Jacobi necessary condition only to smooth subarcs of a given extremal may result in
an essential loss of information.

In this chapter, a new proof is given for Jacobi’s necessary condition. It is shown that
the existence of a conjugate point in the interior of an extremal implies the existence of
control perturbations that lead to a reduction in cost.

The analysis in this chapter is restricted completely to linear-quadratic optimal control
problems. By virtue of the Acessory Minimum Problem this poses no loss of generality.

Some Lemmas on Linear Ordinary Differential Equtions

Before stating the problem treated in this chapter we will define the transition matrix
and give some useful lemmas tailored for our purposes (see also [7]).

Definition 8.0.5 Let A(t) be a given matriz function of time. Then the transition matriz
®(1,1y) associated with A(t) and initial time tg is defined as the solution of the initial value

problem
d ®(t,to)

7 = A(t) ®(¢,t0)

B(t,10) = I.

The importance of the transition matrix lies in the well-known fact that

:c(t) = q)(t, to) o
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furnishes a solution to the linear initial value problem
& = A(t) z(t)

.’E(to) = Zg.

This can be verified easily by differentiation. The following Lemmas will state some nice
properties of the transition matrix.

Lemma 8.0.6 Let A(t) be a Lipschitz continuous matriz function of time. Then the
transition matriz ®(t,ty) associated with A(t) and initial time ty is determined uniquely
and is non-singular for all times, i.e.

det ®(t,t0) # 0 for all times t € R.

Proof:
(See for example Coddington & Levinson [7]). The uniqueness of ®(t,,) follows immedi-
ately from the Lipschitz continuity of A(t).

Assume det ®(¢,%p) = O for some t; € R. Then 3z # 0 such that &(¢;,%0)zo = 0.
But then the final value problem

(t) = A(t) z(¢)
$(t1) =0
has at least two solutions, namely z(t) = 0, and another solution with z(t9) = zo # 0.

This contradicts the assumed Lipschitz boundedness of A(t).
q.e.d.

Lemma 8.0.7 Let A(t) be a Lipschitz continuous matriz function of time with one point,
say ty, of discontinuity. If A(t) is left-hand/right-hand Lipschitz continuous at the left-
hand/right-hand limit of time t,, then the transition matriz ®(t,1) associated with A(t)
and initial time to is determined uniquely and is non-singular for all times, i.e.

det ®(t,to) # 0 for all timest € R.

Proof:
Again, the uniqueness of ®(¢,to) follows immediately from the Lipschitz continuity of
A(1).

Without loss of generality assume t; > t5. According to Lemma 8.0.6 det ®(t,%5) # 0
Vt € [to,t1]. Assume det ®(t3,49) = 0 for some t; > t;. Then 3 zo # 0 such that
®(t2,t0) zo = 0. As det ®(t1,10) # 0 we have ®(t1,%) o # 0. But now we have two
solutions of the final value problem

t=A(t) =z
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.’L‘(tz) =0
namely one solution given by z(t) = 0 and another solution with the property z(t1) =

®(ty,%0)xo. This contradicts the assumed Lipschitz boundedness of A(t) on the interval

[t1, ta)-
q.e.d.

It is immediately clear that Lemma 8.0.7 can be generalized to any finite number of
discontinuities. Hence we get

Lemma 8.0.8 Let A(t) be a Lipschitz continuous matriz function of time with at most
finitely many points, say, t1,..,tn, of discontinuity. If A(t) is left-hand/right-hand Lip-
schitz continuous at the left-hand/right-hand limit of times t;, 1 = 1,..,n, respectively,
then the transition matriz ®(t,1o) associated with A(t) and initial time 1o is determined
uniquely and is non-singular for all times, 1.e.

det ®(t,to) # 0 for all timest € R.

The next lemma relates the transition matrices associated wth A(t) and —A)T.

Lemma 8.0.9 Let A(t) be a Lipschitz continuous matriz function of time and let ®(t,10)
be the transition matriz associated with A(t) and initial time lg, t.€.

d ®(t,t0)
———2 = A(t) ®(¢,t
Ulo) ~ ar) a(t,10)
o(t,t0) = 1.
Then ®(t,10)~T is the transition matriz associated with —A(t)T and initial time to, i.e.

d q)(t,to)ﬂT —_A

. (&) (o)

&(t,10)" T = L.

Proof:
Applying the product rule of differentiation on the simple relation

% (Q(t,to) q>(t,t0)—1) —0

we find d 4
L -1\ _ _ -1 ¢ -1
= (@(t,10)™") = ~2(t,10)™" ;8(t,t0) $(1;t0)
Similarly, replacing ®(t,10) by ®(t,10), we get

d

= (2(t,t0)7T) —®(t,10)T L3¢, 10)T (1, 10)"T

dt
= —0(t,10)T 8(t, )T A)T B(t,10)"T
= A()T ®(t,t0)"T
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q.e.d.
A Class of Linear-Quadratic Optimal Control Problems

In the the remainder of this chapter we will investigate the following optimal control
problem:

Definition 8.0.10 (LQP) Let the linear quadratic optimal control problem LQP be de-
fined by

min %x(tf)TSx(tf) + / " %x(t)TQ(t)z(t) + %u(t)TR(t)u(t) dt

to

z(t) = A(t)z(t) + B(t)u(?)

z(tg) = 0 (8.1)
Tl‘(lf) =0
to,ty fized.

Here 5 € R™", T € R*", s < n, are fized matrices; A(t) € R™", B(t) € R™™, Q(t) €
R™", R(t) € R™™ are time-varying, Lipschitz continuous matriz functions of time with
at most finitely many points of discontinuity, all of the type described in Lemma 8.0.8.
Also

ST =5
QT =Qt) vt
RT =R Wt (8.2)

| R(t) || > rmin Vt, for some 0 < rn;, € R.

For later reference we now state the first-order necessary conditions associated with this
problem.

Lemma 8.0.11 Necessary conditions for a solution of problem LQP stated in Definition
8.0.10 are that there is an absolutely continuous function of time A(-) and a constant

vector v € R?® such that
¢ | A -BR'BT ||
Al T -Q —AT A

z(to) =0
Tz(ty)=0
Aty) = Sz(t))+ TTw
At — A7 =0 at any point of discontinuity of A, B,Q, R
u(t) = —R(t)"'B()TA(1).
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path 2

conjugate point

path 1 &2 \
¢
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=
[
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Figure 8.1: Conjugate Path

Proof:
See [5], [24].

The No-Conjugate-Point Condition for Problem LQP

Definition 8.0.12 (Conjugate Point) Time i, € (to,1s) 1s called a conjugate point for
problem LQP stated in Definition 8.0.10 if there is a non-trivial solution to the boundary
value problem (BVP) implied by the stationarity conditions for LQP (this BVP is given
in Lemma 8.0.11) such that (see Figure 8.1)

z(t) =0 on [to,tc),
z(t) #0 on (tc,tc + ¢], some € > 0.

Assume problem LQP stated in Definition 8.0.10 has a conjugate point, say, at time
t. € (to,ts). Then there are at least two distinct extremals leading from the conjugate
point 2. to the prescribed terminal manifold (paths 1, 2 in Figure 8.1). In the next Lemma
it is shown that the costs associated with these extremal arcs are the same.

Lemma 8.0.13 Assume problem LQP stated in Definition 8.0.10 has a conjugate point,
say, at time t. € (to,ts). Let J; be the cost for going from t. to t; along path i, i € {1,2},
ie. Ji=1zsT8z; + [auni (%zTQa: + %uTRu) dt. Then J; = Jo = 0.

Proof:

Trivially, J; = 0, as z(t) = 0 and u(t) = 0 along path 1. To compute the cost along path
2 let us denote by ty, .., tx, k > 0 all points of discontinuity of the matrix functions of
time A(t), B(t), Q(t), R(t) on the interval (tc,1s]- Using integration by parts (see [41])
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Figure 8.2: Construction of an Extremal with Negative Cost

we find
0= f/N(¢ — Az + BR-'BT)\) dt
= [.) % (\2) = Az - AT(Az — BR1BT)) dt

t

=Tz o + P

z?: +.o+ ATz
1

zi ~ [ AT + AT(Az — BR-1BT)) dt
=Mzl — [(-Qz — ATATz + \T(Az — BR-'BT)) dt

=(Sz5) 25+ [72TQz + ATBR-'BT ) dt

=zsSzs+ fttcf eTQz + uT Ru dt

=2 J2.

q.e.d.
We are now ready to prove the main result of this chapter.

Theorem 8.0.14 Assume problem LQP stated in Definition 8.0.10 has a conjugate point,
say, at time . € (lo,ts). Furthermore, assume that on every subinterval [t',1"] C (o, tg],
t" > t', the controllability matriz

t”

K@, ¢"):= | @(t,t')"'B(t) B)T®(t,)"7 dt (8.3)

is non-singular, i.e. the dynamical system & = Az + Bu is controllable on each subinterval
[t',t"] C [to, ts]. Then there is a control u(t) which yields negative cost for problem LQP
and hence the trivial solution z°(t) = 0, u®(t) = 0 (which yields cost J = 0) is not optimal.
In equation (8.3), ®(t,t') denotes the transition matriz associated with matriz A(t) and
initial time t' as defined in Definition 8.0.5.

Proof:
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Consider Figure 8.2. Let

path 1: A — B — C, “trivial path”, state z°, control u°
path 2: A — B — D, “conjugate path”, state Z, control

In Lemma 8.0.13 we have seen that the costs associated with path 1 and path 2 are the
same. Hence, to show that path 1 is not optimal it suffices to show that path 2 is not
‘optimal.

By assumption, the matrix functions of time A(t), B(t), Q(t), R(t) have at most finitely
many discontinuities. Hence it is possible to find real numbers A > 0, 6 > 0, such that
A(t), B(t), Q(t), R(t) are continuous on [t. — A,t.) U (¢t + 6]. Here t. may still be a
point of discontinuity. Additionally, choose § > 0 small enough such that z(¢) # 0 on
(tc,t. + 6] (this is always possible by virtue of the definition of a conjugate point given in
Definition 8.0.12) and define z(t. + §) =: ZF.

Now, keeping 6, A fixed, consider the optimal control problem

S S SN L AT
min / 5207 Q1) + Zu(t)T R(t)u(t) at (8.4)
te—A
(1) = A(t)z(t) + B()u(t) (8.5)
2(t, — A) = 0 (8.6)
2(t, + 8) = &p (8.7)

Two cases have to be distinguisched, namely
(i) problem (8.4), (8.5), (8.6), (8.7) does not have a solution
(ii) problem (8.4), (8.5), (8.6), (8.7) does have a solution

case (i): If problem (8.4), (8.5), (8.6), (8.7) does not have a solution then especially
the conjugate path @(t), Z(t) does not furnish a minimum to the cost criterion J[u] :=
f %a:TQm + %uTRu dt along the time interval [t, — A,t. + §]. By virtue of the Principle
of Optimality this implies that the conjugate path, path 2, is not optimal on the interval
[to, tf]'

case (ii): If problem (8.4), (8.5), (8.6), (8.7) does have a solution, say u*(t), *(t), then
this solution satisfies the first-order necessary conditions. To show that the conjugate path
Z(t), 4(t) cannot be optimal on [t. — A, t. + 8] it suffices to show that z*(¢) = 0 on any
subinterval [t/,t"] C [t. — A,t. + 6], t” > t' is not possible (note that along the conjugate
path the state is identically zero on the interval (¢, — A,t.)).
The optimality conditions associated with problem (8.4), (8.5), (8.6), (8.7) are given by

7* - -1 T z*
s e

c*(te - A)=0 (8.9)
z*(te +6) = i (8.10)
u*(t) = —R()TIB()TA(1) (8.11)

The assumed existence of a solution to problem (8.4), (8.5), (8.6), (8.7) implies the exis-
tence of a solution to the boundary value problem (8.8), (8.9), (8.10). Now assume that
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there is a non-zero time interval [t',t"] C [t. — A, t. + 6] with z*(t) = 0 on [t/,¢"]. Then
we have on [t/ t"]

0 = z*
= Az" —BR'BT)*
=
= —BR'BT)~

As || R {|> Tmin > 0 on [t/,1"”] (see (8.2)) this implies
0= BTA" on [t',t"]. (8.12)

Now let ®(2,t') denote the transition matrix associated with A(¢) and initial time #’. Then
&(t,t')~T is the transition matrix associated with —A(¢)T and initial time ¢'. Using ¢* = 0,
the solution of the costate equation in (8.8) is then obtained as A*(t) = ®(¢,t)~T A*(¢/).
Now condition (8.12) can be rewritten as 0 = B(¢)7 ®(t,#)~7 A*(¢') on [t/,1"]. But this
immediately implies that '

K, t"A%(t) = 0, (8.13)

where K (t',t") is the controllability matrix associated with the time interval [t’,t"] as
defined in (8.3). By assumption K(t',t") is non-singular. Hence (8.13) implies A*(¢') = 0.
But the “initial conditions” z*(t') = 0, A*(¢') = 0 for the state/adjoint system (8.8) in
conjunction with the assumed Lipschitz continuity of all participating matrix functions of
time A, B, @, Ron [t. — A,t.) U (¢t + 6] immediately imply that z*(¢) = 0, A*(¢) =0
on [t — A,t. + é], even if A, B, Q, R are not continuous across ¢.. But this contradicts
z*(t. + 8) = Zr # 0. Hence path 2 is not optimal.
q.e.d.
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Appendix A

Explicit Calculations to Derive
the Possible Control Logics
Stated in Section 5.6
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A.1 Introduction

This Chapter contains the explicit calculations to determine the possible control logics
in the aircraft range optimization problem treated in Chapter 5. Several singular control
logics are found to be possible. In Section A.5 the supplementary optimality conditions
derived in Chapter 6 are applied to these singular control cases. For convenience the finite
dimensional minimization problem obtained by applying the Minimum Principle on the

original optimal control problem is restated below.

A.2 Finite Dimensional Minimization Problem Implied by

Minimum Principle

Cost Function

a) ¢ = —z(ty)
min! ¢ (E(ts), h(ts),v(ts),z(ts),ty) with ¢ or
b) ¢ = ty.
State Equations
E = [6(T(E,h)~ D(E,h,n)+ Dmaz(E,h)) = Dpnaz(E, )] 3%
h = wvsiny
5 = 2(n-cosy)
z v €08Y.
Controls
é throttle
n load factor
Control Constraints
9= —é <0
g2 = 6-1 S 0
g3 = —N =Ty <0
g4 = N — Npmar <0
State Constraints
Co:= v — VUpar(h) <0
On arcs of active state constraint differentiation yields
dCy
C; = —
! dt
= (T = D+ Drer) = Dac) s — viny (s +2) = 0
W maxr v
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Hamiltonian
H = +/\E [6(T -D+ Dma:c) - Dma:c] 'va
+Apv sinYy
A9

+XyL(n — cosy) (A-9)

+Azv cosy
Minimum Principle
At every instant of time the control is determined by the condition that the Hamiltonian
(A.9) be minimized subject to all active control and state constraints. At each instant of
time this leads to a finite-dimensional constrained or unconstrained parameter optimiza-
tion problem. The following cases have to be distinguished.

A.3 State Constraint Not Active

The Kuhn-Tucker conditions associated with the finite-dimensional optimization problem

(6,n) = arg rgnsl(r)l H

can be stated as follows

O(H +oTyg)
) G S F A
3% 0
T
g tog)
an
=0 if g6<0
<
I gl_Oandal{ZO if gy =0
=0 if ¢g2<0
v g2§Oandag{20 if gg=0
=0 if ga<0
<
\" g3_0anda3{20 if g3=O (AlO)
=0 if g4<0
<
VI g4_0and04{20 if gi=0

3 (H+eTg) 8%(H+oT9) Aé
VII [AS, An] [ az(}?i’g,rg) 62(}9{65&) ] [ An jI >0
ndé on?
for all [Aé, An] € R? satisfying %Aé + a—hAn =0
06 on

where vector function h contains exactly the active components

of the inequality constraints g < 0.
Explicitly this implies

I Ag(T =D+ Dmaz) e

w
2KvW
Y 77,+A7%—-0'3+04=0

—o1+02=0

II —Agé
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II1

v

VI

VII

_5§0and01{;8 ii g:ig
6_1§0and02{;g :i izzg
e o 58 2
+n_nmu$03nd<’4{;g g Z:ig

A6, An][_on :Z“ﬁ””ﬂmw?e

for all [Aé, An] € R? satisfying %AéS + g‘gAn =0

where vector function A contains exactly the active components

of the inequality constraints g < 0.

To solve this problem several cases have to be distinguished.

A31 Ag<0, A #0

With Ag < 0 equation (A.11-I) can be satisfied only if 63 > 0, i.e. constraint (A4)is

active. Hence

I

II

111
v

Vv

VI

VII

Define

AE(T = D + Daz) o 4 05 = 0

W
21,7
‘vwn+/\1%—03+04=0

if g3 <0

-n—anSOandag{ if gs=0

VAT

if ge <0
if g4:0

(A6, An) [ _on —nJ [ Aé } /\E2KvW

[en i enl oo

+7 — Nyper < 0 and 04{

AV

-6 An q

for all [A8, An] € R? satisfying QI}-Aé + a——An =0
n

where vector function h contains exactly the active components

0é

of the inequality constraints ¢ < 0.

n ,=/\_7 99
0" X5 20 KW
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(This is the solution of (A.12-II) with o3 = 04 = 0). Simple analysis involving equations
(A.12-1I), (A.12-V), (A.12-VI) shows

costraints (A.5), (A.6) are non-active if — imaz < 7o < Nmaz
costraint (A.5) is active if ng < —NMmar
costraint (A.6) is active if ng > +maz

Explicitly, we get

1 op=-Ag(T-D+ D,m)%

n = "o if — pazr < 10 < +max
I o3 = —ApEeW, 4 M if ng < —Mmas
04 = +/\E2—5—“Ln - A.-y% if ng > +7maz
11 c1=0
v 6=1
o3=0 if — nmar < 7o £ +max
\Y n=—Nmaz I Mo < —Nmaz (A.14)
o3=10 if ng > +nmax
g4=0 if — mee < 10 £ +mes
VI 04=10 if ng < —"maxr

n = +Nmaz if ng > +Nmazx
Vil satisfied in all 3 cases without further restrictions

A3.2 Ag>0, )\ #0

With Ag > 0 equation (A.11-I) can be satisfied only if o1 > 0, i.e. constraint (A3) is
active. Hence

I ,\E(T—D+me)%-a1 =0

2
I —Agé Kan+/\7%—cr3+cr4:0
I1I 6=
v 0’220
=0 if g3<0
\Y —N = Npaz < 0 and 03{ >0 if gs=0 (A.15)
=0 if g4<0
VI +n nmaISOanda4{20 if gq=0
0 -n Aé 2KvW
VII [A&,An][_n —6][An]'\E . >0
oh oh
for all [Ad R? satisfying —Aé + —An =
or all [AS, An] € R* satisfying (%A +6n n=0

where vector function h contains exactly the active components

of the inequality constraints g < 0.
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By inserting 6 = 0 into equation (A.15-IT) we see that constraint (A.5) is active if A, > 0
and constraint (A.6) is active if A, < 0. We get

I a = +/\E(T_D+Dma:z:)

11 03:+’\'Y% lf/\—y>0
oh =ML ifA <0

v
w

I 6=

1A% gg = 0
N=—Npmer if Ay >0

v { o3=10 if A, <0 (A.16)
gy =10 if /\7 >0

VI { n=4Rpmer if Ay <0

VII satisfied in both cases without further restrictions

A.3.3 )\E = 0, )\7 75 0

With Ag = 0 equation (A.11-I) can be satisfied only if o; = 0 and o3 = 0, i.e. constraints
(A.3), (A.4) are both non-active. Equation (A.11-II) implies that constraint (A.5) is
active if A, > 0, constraint (A.6) is active if A, < 0. We get

I AE=0

I o3 =+4+A% if A, >0
og=-22% if A, <0

111 o] =

v o9=10
n=—Npe if Ay >0

M { o3 = ifA, <0 (A.17)
o4 =0 if /\7 >0

VI { n=+4Nmey if A, <0

VII in both cases trivially satisfied with strict equality

Obviously, we have not yet obtained explicit information on control §. Control § has
to be determined from the condition that %% and all its derivatives are identically zero

(singular control). With

H
S a—:)\E(T—D-i-Dm,w)

= 2 (A.18)

v
w
we have

S=0=Ag=0 (A.19)

Below, further information is obtained by differentiation. Whenever control n appears
explicitly in this process it is formally replaced by +n,,,,. In accordance with conditions
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(A.17-V), (A.17-VI) it is understood that n = + ez if Ay < 0 and 7 = —npq if Ay > 0.
We get
S

: v

/\E(T—D+Dma,;)W

g . g2 g v
—/\h;sm'y + /\wﬁ(inmam‘ — €osy) — ’\x; cos 7| (T = D + Dmaz) w

. g g
= [—/\h siny + /\,,;)-i(ﬂ:n,,m1c — €Os7Y) — Az €Os 'y] (T = D+ Dpyuz) W
As (T — D + Dpog) 7 # 0 we have
§$=0= -\ siny + AW%(inmar —cosy) — Agcosy =0 (A.20)
Further differentiation yields (using conditions (A.19), (A.20))

§ = [—;\h siny — Apcos vy + /.\7%(:1:71,,10“C —cosvy)+
2g2 . . g . .
+A, (_F(inm” —cosy)(E —h)+ 2 sin 77)

+ /\1‘51n77] (T_ D+Dma1‘)

SIS

Here we know explicitly
_oH
dh
- - Iginv -39 _ g
= Agl..]+ /\hv siny — Ay 2 v(:tnmax cosy) + /\Iv cos 7y
=0

A =

_9 [-—/\h siny + AW%(:i:nmaz —€OSY) — Ap€Osy
v v

-~

=0 (from 5=0)
and
: oH
L o= -
y 67
= —Mg[...]— Apvcosy — /\Wgsin’y + Ayusiny
v
=0
Using this and
¥ = g(:tnmar —c0s7)
v
yields
S = |-Apcosy+ (—/\hcosy—)\.,%sin‘y+/\xsin7>+
! v

2 . . i .
_,\W%(E —h)+ /\W%sin'y + /\zsm'y] (T-D+ Dmar)%7

= |—Ancosy + Agsiny — Aw%(E’ - h)] 2(T — D + Dmaz) %Ay
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For all practical purposes n,g; > 1 so that 4 # 0. As has been stated earlier also the

factor (T — D + Dpaz)iy > 0. Hence we find

S=0=-Apcosy+ Agsiny — AW%(E-—E) =0
Using
h = vsinvy

and
v

E = [8§(T = D(n = tnmaz) + Dmas) = Dmazl;

v
[6T - Dm"]W

finally yields

Door + W (sin'y + ‘,\%,("\h cosy + Az sin 7))

S=0=6= T
A34 Idg=0,A=0
Differentiation leads to .
AE =0 =
Ay =0

—Apsiny - /\I%c.os—y =0 N
—Apvcosy + Azvsiny =0

(—sin7 —cos*y)(/\h>=(0>:>
—cosy +sin7y Az /L O
AL=0, A, =0
Together with the initial assumption Ag = A, = 0 we get
AEE A=A, = =0

Hence case A.3.4 can be excluded.

A35 Apg<0,A,=0

(A.21)

With Ag < 0 equation (A.11-I) can be satisfied only if constraint (A.4) is active. Equation
(A.11-II) implies that both constraints (A.5) and (A.6) have to be non-active. We get

I Ag(T = D+ Dpas) s + 02 = 0

w
S Y L LA
M  o0,=0
vV 6=1
A% o3 =0
VI g4=0

VII satisfied without implying further restrictions
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Hence

I 02= —A5(T'~ D+ Doas)y;
I n=20
Im o,=0
v 6=1
V o03=0 (A.23)
VI o4=10
Vil satisfied without implying further restrictions

This is no singular control. Obviously, case A.3.5 is just an extension of case A.3.1 from
Ag < 0, A, # 0 to Ag < 0 (and no restrictions on A,).

A36 Mg>0, A =0

With Az > 0 equation (A.11-I) can be satisfied only if constraint (A.3) is active. Using
A, = 0 and § = 0, equation (A.11-II) implies that constraints (A.5) and (A.G) must be

both non-active. We get

I /\E(T—D+Dm”)%—al =0

g
11 )\,,; =0
I é6=0
v 02 =
V o03=0 (A.24)
VI g4=0
VII  [A6, An] [ o ] [ L ] AE“;’W >0
for all [Aé, An] € R? satisfying A =0
Hence
v
I 01= (T - D+ Dmac) g
I x=0
Im é6=0
I\% oo =10
V o03=0 (A.25)
VI aqs =0

VII trivially satisfied with strict equality

Obviously, we do not yet get any explicit information on control 7. This information has
to be obtained by differentiation of identity (A.25-1I). We get

Ay =0= —Avcosy + Azwsiny =0 (A.26)
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Before differentiating further, several cases have to be distinguished:
Case 1: Ap >0, A, =0,A: =0, A, =0
Then (A.26) is satisfied. From A, = 0 we get by differentiation

8 (Dmar %)
oh

/.\h = +)‘E =0

For the present aircraft model B—(D%“fi) > 0 so that case 1 can be excluded.
Case2: Ap >0,X,=0,A,=0, A, #0

Then (A.26) yields

cosy =0

Differentiation gives (using sin-y # 0, as cosy = 0)

¥=0
With cosy = 0 this implies

n=10
Comprehension case 2:
AE>0, A, =0,2, =0, A, #0

6=0

§ = A, takes over the role of a switching function with

Ay=0  (5=0)

cosy =0 (5=0)

n=0 (§=0)
Case 3: Ag >0, A, =0, A, #0

Then necessarily cosy # 0. Otherwise (A.26) can never be satisfied. With cosy # 0
(A.26) implies

Ap = Az tanny.
Differentiation gives (using (A.25-II), (A.25-III) and the result above)

d (Ah - A:L' ta*n’)/)

dt
= A - Az
h cos? vy
0 (Dmaz 1) g g 3(n — cosy)
= ap P Pmesi) 39 a T oy -y, B2 087)
E oh + hvSln7+ v %7 cos?y
0 Doori I(n —
= )\E—(—W—)-i-)\xtan'ygsin'y-i-z\xgcovy—/\x“(—n—cﬂ
oh v v cos? y
_ /\EB(Dmax%) AL 1 _/\x%(n—cos'y)
dh v COos Y cos? y

Solving for load factor n yields

cos”y

Agv 5, 0O (Dmazﬁ)
2EY I\ Wmaziy) | o
N 5h + 2cosy
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Comprehension case 3:
AE> 0,0, =0, #0

6 =0
Ay 0
Ap = Aztany
A 0 (Dmacyy
n = fgcosz'y-(_a;l)— + 2 cos7y.

A.4 State Constraint Active

The Kuhn-Tucker conditions associated with the finite-dimensional optimization problem

(6,n) = arg ngtlll.rsleOH

can be stated as follows

(‘)(H + puCr + G’Tg) _

1 5% 0
T
1 O(H+pCr+o g):0
an
111 C;i=0
=0 if g1<0
v g1§0and01{20 if g =0

=0 if g2<0

\% gz§0and02{20 if ga=0
=0 if g3<0

VI g3 <0 and 03{ >0 if gs=0 (A.27)
=0 if g4<0

VII g4§0anda4{20 if ga=0

>0

32 (H+y,C21 +0Tg) 82 (H+8u01 +oTg) AS
VIII [Aé, An] l: 82(H+Eg'1+0Tg) 32(H+uC?+aTgl jl |: An ]
Indb dn?
oh

for all [A6, An] € R? satisfying %%A& + a—An =0
n

where vector function h consists exactly of equality constraint C; = 0

and the active components of the inequality constraints g < 0.

With conditions g < 0, C1 = 0, and Hamiltonian H given by equations (A.3), (A.4),(A.5),
(A.6), (A.8), and (A.9) this implies explicitely

v
I (/\E-{-u%)(T—D'{'Dme)W—G’l-FUQZO
2K oW
11 -5<,\E+p~‘l> O i ad —ost =0
v q v
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11

v

VI

VII

VIII

(6T = D + Dinaz) = D) 5 — wsin (v;m + %) — 0

=0 if <0

_6§0and01{ >0 if g =0

=0 if g2 <0

6—1§0and02{ >0 if g,=0
2 2=

=0 if g3<O0
—N — Nypax S 0 and 0'3{ Z 0 if g3 = 0 (A28)
=0 if g4<0
+n—nmar§0anda4{ >0 if g4=0
. 0 -n Aé g\ 2KvW
(A, An][_n _6][An](l\E+ll;> . >0
h
for all [A6, An] € R? satisfying %Ad + %An —0

where vector function A consists exactly of equality constraint C; = 0

and the active components of the inequality constraints g <0.

To solve this problem several cases have to be distinguished.

A4l A #0, (Ap+pul) #0

In this case constraint (A.3) or (A.4) has to be active, otherwise condition (A.28-1) would
imply (Ag + p4£) = 0. Furthermore, with constraints (A.3), (A.8) active or constraints
(A.4), (A.8) active it is clear that constraints (A.5), (A.6) have to be non-active because
otherwise the two controls were overdetermined. Hence o3 = oy = 0. In equation (A.28-

IT) this implies § # 0. Hence the active constraints are exactly constraints (A.4) and
(A.8). We get

v
I (AE+;¢%)(T~D+D”M)W+02:0

§ S (AE +p2) 2K a2 =0
v q v

I (6T — D+ Dmaz) — Diaz) % — vsinvy (vinar + 2) =0
v gy = 0

V 6-1=
VI 03=0 (A.29)
VII 04 =
0 -n Ab g\ 2KoW
VIII  [A§, An][ Cn -6 } [ An } (AE +u;) p >0
for all [A6, An] € R? satisfying
0Cy oC, ,
WA(S + —a—n—An =0
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Hence

II

III
Iv

VI
VII

VIII

092 992 5 . 992 092

96 an =0

02 = — (AE + ﬂ%) (T -D+ Dmaa:)%

g Ay 99
rap4pd)=2 99
( E+uv) n 2KviW

|n| i\]T_U_gw'SIH’y(max—*_%)_qcDO

W oK
o, =0
6=1
o3 =
o4=20

(A6, An] [ o ] [ gz } (AE +u ) 21\;W

for all [AS, An] € R? satisfying
A§=0
An =10

(A.30)

0

With o, > 0 equation (A.30-I) implies (Ag + #£) < 0. In equation (A.30-II) this yields

the sign condition

Explicitly, we get

I

I

v
\%
VI
VII
VIII

n >0 if A, <0
<0 ifA,>0

09 = (/\E + p= ) (T D+ Dma:c)_

w
v A q
= _Ap—-+ =
K Eg+ n 2KvW
T——sin v 1) _qC
L o '""*v) D0 i A, <0
T-Y2s v —qC
%\f in 7 '""’* 97100 ey 5
0’1-—-0
6=1
0’3:0
0’4:0

satisfied without implying further restrictions

(A.31)

Note that (A.31-I) in conjunction with condition o3 > 0 implies Agp + uZ < 0, i.e. the
case Ay # 0, (Ag + pZ) > 0 can be excluded.
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A42 M #0, (Ap+pul)=0

Here condition (A.28-1) immediately implies 0y = 05 = 0, i.e. constraints (A.3), (A.4)
are both non-active. Condition (A.28-II) implies that constraint (A.5) is active if A, > 0,
constraint (A.6) is active if Ay < 0. We get

I

II

I

v
\%

VI

VII

VIII

Hence

(AE +u%) = 0

ga=—AZ ifA, <0

(6(T = D + Drag) — DW)%_ vsiny ( o+ 2) =0

v
g = 0
0y = 0
n=—Npe ifA,>0
{ 03 =0 if Ay <0 (A.32)
o4 =0 if /\7 >0
n=+Nmee if Ay <0
Aé g\ 2KoW
[A&,An][_ 5 [An]()\g+u;) . >0
Oh oh
2 e ON on N —
for all [Aé, An] € R” satisfying 5% Ab + BnAn 0

where vector function h consists exactly of equality constraint C; = 0

and the active components of the inequality constraints g < 0.

L (end) <o

I o3=+A2 if A, >0
04 = ——/\.,U ifA, <0
maz + vs}‘n maz + 2
- _ 7 (v £)
T D + Dmax
1A% g1 = 0
A% g9 = 0
n=—Nmay if Ay >0
Vi { 63=0  ifA <0 (A.33)
04=0 if /\»7 >0
Vil { n=4Nmee if A, <0

VIII satisfied with strict equality
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A43 A =0,Ag+pl=

Equations (A.28-), (A.28-1I) now immediately imply 09 = 03 = 03 = 04 = 0, ie.
constraints (A.3), (A.4), (A.5), (A.6) are all non-active. We get

g v
Z —~ D+ Dpoz)es =
I (/\E+Hv)(T + )W 0
g
II /\7;-'—‘0

III (6(T — D + Dmax) - Dmaz) vg‘/— - vsin7 (”U:naz + %) — 0

v g1 = 0
v 0y = 0
Vi g3 = 0 (A34)
VII 04 = 0
0 -n Aé g\ 2KoW
= >
VI [AS, An][ oo ] [ An] (/\E+uv) =20
C
for all [AS, An] € R? satisfying %C(S—lAé + 6gn—lAn = 0.
This implies
v
I = —-Ag—
H Eg
I Ay=0
Doz + Xvsiny (v),,. + 2
I 0= g 7 )
T - D + Dmaz
v g1 = 0
AY g9 = 0
VI o03=0 (A.35)
VII T4 = 0

VIII satisfied with strict equality

Obviously, we do not yet have an expression for control n. This information has to be
obtained by differentiation of the “switching function” 5 = ). Before proceeding with
differentiation we state all adjoint differential equations.

fp o U+ uCY)
oF
~ OT 0D ODmaz) O0Dmac) © g
- —/\E[(a(b—l’_}_ﬁ+ OF )— OF )W+(6(T—D+Dmar)_Dma1)m]
A\ g .
—Ap=siny
v
—/\z%cos'y (A.36)

_ [(6 (Qz_a_l)__*_aDma:z)_aDmax)_g__g/ . ]
# 5E  O0F ' OE 3E )Wy mes®Y

123



Condition (A.35-1T) Ay = 0 is used here already. If we insert (A35-) pu = —AEg7 then the
terms

—/\E (6 (a—T — 8_D + aD"‘““f’) _ aDmax) _'U_
9E _9E T OE 9E )W

—u (5 (a_T _ a_D + aDma.:xc) _ 8Dm”> 9
9E 9E ' BE 9E ) W

cancel out. Furthermore, by use of (A.34-III) (which is equivalent to (A.35-I11)) we can
replace

(8(T = D + Dinaz) = Dimaz) 7y by siny (v,,, + 2).

Then we get from (A.36)

"\E = -Ag (v:mw-f-g)sin'y
v
g .
22
hvsm‘y
—)\xgcosy

’ .
_/\E Vimaz SIY

and hence
\ ' g .
Ap = —Ap (2vmu + ;) sin y
~ a7y siny (A.37)
g
Az; COS 7y
Similarly
L 0(H +aCy)
b oh
or 6D 0D oD v g
= =) S =— - maz } maz)~_ _ N _J
& [( (Bh oh + oh ) oh W (6(T D+ Dmal‘) Dmaz') oW
+/\h2 siny
v
g
+/\xv COs v

OT 0D 3Dpar ODpaz\ ¢ . , g) .
N[(a(ah (9h+ oh )* ah )W—(vmazv—vmw; sm7]
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g
+/\hgsin'y (A.38)
v
+/\$gcos7
v
and
T T 8’7
= —Apvcosy
+Azvsiny

+p (vim + %) vcosy

= —Agg (Vlnag¥ + g) cOS 7

—AR¥ COSY (A.39)
+Azvsiny

T Oz
=0 (A.40)

Now condition (A.35-1I) § = A, = 0 implies by differentiation

!
Azsiny — (/\h+AE (1+vmg%v))cos7 =0 (A.41)

Before differentiating equation (A.41) further it is convenient to distinguish the following
two cases:

case 1: A; =0,
case 2: A; #0,

In the course of the following calculations we will also make use of the fact that constraint
(A.7) is active, i.e. v = vmac(h).

case 1: A\, =0

Then equation (A.41) reduces to

VoV
(Ah + Ag (1 + —"i—>) cosy=0 (A.42)
g
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If this condition is satisfied through (/\h + AE (1 + 3’—411;13)) = 0, then further differentia-

tion gives
’ " ¢ 2

[;\h n /\E (1 + ’Umazv> + AEM_tgﬂvsin 7} cosy = 0
g9 g

Using (A.37) and (A.38) we find

"
H/\E (2'0 +g— vm‘“” )sin7+/\h—g-sin7}

[ /\E( Uraz )sm7 /\h—sm-y] (1+ ’";Iv)

" r 2
+/\E——-—v”‘“v T Umaz vsin 7] cos 7y =0
g
=
g\ . g . vl
[P (o s o] 5
o 2
+Ap 2= vsin‘y] cos 7y =0
g
=
9 7 2 ! 2
[/\E (_M—v:nu+&—”“;’——z siny — Apvl,,, siny| cosy =0
g
=
vl v
[()\E (l + m;“’ ) + /\h) (=v), 4z Sin 'y)] cosy =0

Obviously, this condition is satisfied already due to condition (A.42). Further differen-
tiation gives no new information. This case refers to a singular arc of infinite order. If
condition (A.42) is satisfied through cosy = 0, then further differentiation of this condi-
tion yields

sinyy = 0.

As siny # 0 this implies 4% = 0, and hence

n = COS7.

case 2: A; #0

The assumption cosy = 0 in (A.41) leads to A, = 0 which contradicts the assumption in
case 2. Hence cosy # 0in this case. To obtain further information we have to differentiate
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equation (A.41). As this involves Ag, A, we first state the associated differential equations,

simplified by use of equation (A.41). From (A.41) we get

!
A = Az tany — Mg <1+v—m’?ﬁ)

Inserting this into (A.37) gives
! ’ g\ ..
AE = -Ag (vaaz + ;) sin y

/
- (/\xtan'y - AE (1 + M)) gsin'y
g v

—z\,g cos Y
v

!
maxr

= —Agv sin’y—)\zg(tanysin'y-{-cos'y)
v

. 1
siny — /\x%cosv

!
mar

= —Agv

Inserting (A.43) in (A.38) gives

. " 2
AL = AE (21):,“” + g_ vﬂz_v_) sin ¥y
v g

/
+ (z\xtan'y - AE (1 + M)) gsin'y
g v
+/\z%c0s7
" 2
= 4XAg (v:mw - v_,,%q_) sin 7

+/\z% (tan+ysinvy + cosvy)

’U” ,02 . g 1
= (v:naz: - i“;—) ST /\z; cos 7y

Before differentiation we write (A.43) as
’
A tany — Ap — Ag (1+M) =0
g

Differentiation gives

;\rtan7+/\z 72 —;\h—;\E(1+&"—‘”—”—
COs* «y g g

Now insert k, Ag, A, A; as given in (A.2), (A.44), (A.45), (A.40) and use

. - R g v .
E-h = vsm'y(v:mx-i-;)g—vsmy
’ 2

— maxr Sin 7
g
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Then we get

’.)’ , ) " 1)2 . g 1
Az - A — Ap22f _sin Ag =
[ cos? y (+ EVmas SINY = 2B g TE A v Cos 7y

) g 1 U ar?
+ (f\EvLMSIn*r + /\x;cos7) (1 + ig—) +

! 2
: 9 Vnaz?" 1
—AE (vvl';m.rvvma:v siny + v:naz;%‘ sin "/) E} = 0
=
o p?
AE | ~Vnaz Sin Y + =EEE—siny 4 vy, siny
! 2 " , 2
UU () v .
+Msin7—Msin7_ mazx Sln’y)
g
. 1 ) .
€Os®y wvcCosy vcosYy cos 7y
=

1" 2 1
v ve o, v Vm .
/\E maxr sin 7 _ ‘mar ar sin 7
g g

= 0
cos? y

As we are on an arc with active state constraint v — v, = 0 the coefficient of Ay is zero
and we have
’\37(7 + v:nax cos 7) = 0

or explicitly

Az (g(n ~co8Y) + Vs cos7> =0
v

As A; is assumed not-equal zero this finally implies
's
n= (1 - M) cos 7. (A.46)
g

Ad4d4 AM=0,dp+pl#0

Then condition (A.28-I) can be satisfied only if either constraint (A.3) or constraint (A.4)
is active. Then again, with already two constraints active, namely constraints (A.3)
and (A.8), or constraints (A.4) and (A.8), no further constraint can be active so that
03 = 04 = 0. But now condition (A.28-II) becomes § (Ag + p2) %mn = 0. This equation
can be satisfied only through § = 0 or through n = 0. The case n = 0 can be eliminated
quickly, as both cases, 6 =1 & n = 0,and, § = 0 & n = 0, are inconsistent with constraint

(A.8).
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Hence the active constraints are exactly (A.3) and (A.8). Note that condition (A.28-
I) in conjunction with condition oy > 0 now implies that only the case Ap + pl > 0is
possible. We get

I (,\Ew%) (T~ D + Do)z ~ o1 =0

II A=0
I11 Dmaz%—vsm'y< maz+%) =0
IV 6=0
V gy = 0
VI 03=0 (A.47)
VII o4=0
0 -n Ab 2K vW
VII (A6, An][ s ] [An} (,\E + 42 > -
for all [AS, An] € R? satisfying
091 391 _
2 — A6+ — I =0
0Cy oCy .
-8—6A6 o —An =0.
In presence of condition (A.47-IV) é = 0, the conditions
g1 391
§ =
55 —Ad+ — n 0
aCy aC _
—é—S—Aé on —An = 0

on the perturbation vector [Aé, An] € R? in (A.47-VIII) yield explicitly
-Aé=0

g
T - Do) =A8 =
( D+ )| Aé=0
and are both satisfied if and only if
Aé =0.

Inserting Aé = 0 in (A.47-VII) and using (A.47-IV) 6§ = 0 shows that (A.47-VIII) is
always satisfied with strict equality. Hence we have

I o= (AE + u%) (T = D+ Dpa)ys;
I A =0
I Dmaz% + (v), ;v + g)siny =0
IV. §6=0
V o2 =0
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VI g3 = 0 (A48)
VII o04=0
VIII satisfied with strict equality.

Now, control n and multiplier x have to be determined from equations (A.48-1I) and
(A.48-III) by successive differentiation. Using (A.48-1I) and (A.48-1V), differentiation of
(A.48-11) yields

0 = X
A(H + pCh)
B
= —Apvcosy + Agusiny + p (v) v+ g)cosy (A.49)

To satisfy this equation, two different cases have to be distinguished, namely

case 1: cosy = 0,

2. case: cosy # 0.

We get

case 1: cosy =0

Equation (A.48-III) involves only states and no costates. Hence, control n or multiplier
it can enter derivatives of equation (A.48-III) only through the right-hand sides of the
state equations (A.2). This immediately implies that multiplier g can never appear in
any derivative of equation (A.48-III). In conjunction with (A.48-1V) § = 0, it also implies
that control n can appear in derivatives of equation (A.48-III) only through terms of the
form cosy 4. But with the assumption cosvy = 0 this implies that also control n can never
appear explicitly in any derivative of (A.48-11I). Hence equation (A.48-III) either leads to
a contradiction after a finite number of differentiations, or it leads to a situation where
after some finite number of differentiations all further derivatives of (A.48-III) are satisfied
automatically. This mathematically complex situation can be understood by looking at
the physics of the problem. The assumption cosy = 0 implies immediately n = 0. That
means the aircraft goes into a vertical dive with engines off. We are also assuming that the
g-limit is active. But obviously, we are riding the g-limit onlybecause the g-limit is such
that it is automatically satisfied for the chosen controls § = 0, n = 0. Hence the g-limit
can also be regarded as non-active and we end up with the case discussed in refrc-s 1.6,
case 2. If the g-limit is violated for § = 0, » = 0, then the present control logic can be
excluded.

case 2: cosy # 0

As vy,,.(h) > 0V h 2> 0it is clear that (v],,, + 2) # 0 and hence equation (A.49) can be
used to determine multiplier p. Explicitly, we get

_ Apvcosy — Agvsiny
— (VUhuag? + g) cOSY

and hence
_ Ap — Aztany

/ a
Vmaz + v

(A.50)

Now control n has to be determined from equation (A.48-III) by successive differentiation.
In the following calculations we will make use of the fact that constraint (A.7) is active,
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i.e. v = Vpmaz(h). We get
aDmar > g
E h) =
9E T on )W
+ (VinaaVnazh + Vipazvh) siny +
+ (VarV + g) cOS7T Y

_ (aDmar -

With the state rates

. v o p?
E = —Dpor—=|"—+0v]|siny
maz‘W ( g )
h = wsiny
5 = I(n—cosy)
v

this yields

oD ! azV? aD
0 = ( 81;3“ (vm“‘;v + v) siny + a’;:”vsin 7) —;7 +
+ ((v;nar)?'vsin’y + o v?sin 7) siny +

+ (v], 4.0 + g) cosy (n — cos 7)%

As (v, v+ g) # 0 and cosy # 0, this equation determines control n. We get

' 2 .
[(B%E (U - + 1) 8D3h ) _Vgl_/_ + v;’mz + v;),zaz‘v vsiny

g
1 = COS —
7 L(vh v + g)cosy

(A.51)
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A.5 Generalized Legendre-Clebsch Condition in the Sin-
gular Control Cases

A.5.1 Singular Control Case A.3.3: State Constraint Not Active, Ag =
0, A, #0

Here we have singular control in presence of an active control constraint, namely constraint
(A.5) g3 = —n — Nz = 0if A, > 0 or constraint (A.6) g4 = n — e = 0 if Ay < 0.
In either case (as %9773 # 0, %97% # 0) control n can be regarded as the control that is
determined by the constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p
used in Chapter 6 have the following meaning in the case presently under consideration:

ul = [6,n]
v=24
w=n
m=2
p=1.

From (6.69) we find that the differential operator dd—6 takes the following form

Lo o 0zt
d6 ~ 96 om\on) 5’ 'T%
—CE
86
and from (6.68) we find for all states y € {E, h,7,z}
. . . N 1 .
L ‘9__6_(%) 99 3,4
dy dy On\on oy
I
= 5
Explicitly, this implies
a o
ds 06
= A5(T = D+ Do)y

and, by applying Definition 6.6.1, we find that control § is singular if and only if A\g = 0
and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

R1 € R°% = non-existent
Q1 € R%* = non-existent
B, € R*® = non-existent
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and

€ R4
g: c R } = Q2B; € R = Q2B = (Q2B,)"
so that condition i) of Theorem 6.6.2 is always satisfied. Furthermore
B, € R41

= By"O:7 € R*®

RO,4
gl 2 Pl = R, € R%° non-existent
Bf c R4O = Q2B; € R*
0, - |£H &H &2H &
2 7 | d6dE’ dédh’ dédv’ dédz
= [0,0,0,0]
p, - |dE dh & az)'
S PTRPTAFTRPT;
T
= [(T -D + Dmax)';%/‘,os an]
so that
d \T
Ry = B,"PB, - E(Q2B2)_ (ABz - Bz) Q7
% 25
v d’H
= T — D+ Doz ET-7)
( * )W) dE?

(T - D + Do)

2 3 2
IX’) [ Ap sin 7y 3+/\7(n—cos7)3i—/\ cos*yg]

(
(
- ((T D + Dynay)
(
(

v \2 g2
W) ﬁ[ Apsiny + A, (n—cos7)——/\ cos*y]
v \? g? 3
= T—-D+ Dpr W) ﬁ{ ~(n — cos‘y) J_ /\,,U%(n~cosy)]
v 2g3
= [(T- D+DmazW E Ay(n — cos ).

>0
For all practically important cases n,,,, > 1. Hence the control logic

n=4nNmer if Ay <0
N = —Npmar if /\7 >0

(see A.3.3) implies that always R3 < 0. Consequently,

| R RT
R’[R2 33]20

is always violated and the singular control given in case A.3.3 can be rejected as non-
optimal.
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A.5.2 Singular Control Case A.3.6: State Constraint Not Active, A\g >
0, )\, =0

Here we have singular control in presence of the active control constraint (A.3) g1 =

-6 =0. As %{si # 0 control § can be regarded as the control that is determined by the

constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p used in Chapter 6
have the following meaning in the case presently under consideration:

uT=[n’6]
v=n
w=26
m=2
p=1.

From (6.69) we find that the differential operator ad; takes the following form

4 _ i_i(%)"%
dn ~ On 06 \ 06 an
A
- On
and from (6.68) we find for all states y € {E,h,v,z}
L i_?_'(ﬁg_l)q%
dy Oy 06\ 06 dy
A
= %
Explicitly, this implies
an _ on
dn ~  On
g
= ’\‘Y;

and, by applying Definition 6.6.1, we find that control n is singular if and only if A, =0
and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

R, € R%® = non-existent
Q, € R®* = non-existent
B, € R*® = non-existent

and

Q2 € RM

41 (= Q2B2 € RV = Q2B; = (Q2B:)T
B, e R

134



so that condition i) of Theorem 6.6.2 is always satisfied. Furthermore

B, € RM!
Q? c R0,4 = B2TQ1T € RO:0
Ql c gl = R, € R%° non-existent
B: € RO = Q2B; € R®®
0, - |F£H &8 @H &
2 7 |dndE’ dndh’ dndvy’ dndz
= [0,0,0,0]
5, — [4E dh ¢y di)’
27 |dn’dn’dn’ dn
T
= [0,0,2,0]
v
so that
d - \T
Ry = B,"PB; - 7 (Q2B2) — (ABz - Bz) Q3
T =5
_ (g)2d2H
- \v/ dy?
a\?
= (—) (—Apvsiny — Agvcosy).
v
Hence
= | B R
R; R
= R3
7\?
= (—> (=Apvsiny — Ayvcosy).
v

In A.3.6 case 2, the condition R > 0 implies

2
- (9 _ in~v—
R = (v) ( Apvsiny \/\f/vcos'y)

=0
2

= ——g—-/\hsin'y >0
v

so that necessarily

siny >0 if Ap<0
siny <0 if Ap>0.
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Together with the condition cosy = 0 implied by § = 0 this finally yields

v=+90° if A <O
nv< =90° if A >0.

In A.3.6 case 3, the condition R > 0 implies

2
R = (g) —  Ap wvsiny — Azvcosy
v ~
=\ tanvy

2
—‘% (Az tanysiny + Az cosvy)
9 s

= —= > 0.
v COS 7

Hence, for —90° < y < +90° necessarily A, < 0. Together with the assumption A, # 0
this finally implies A, < 0.

A.5.3 Singular Control Case A.4.3: State Constraint Active, A, =0

Here we have singular control in presence of the active control constraint (A.8) (due to
state constraint (A.7)). As %} # 0 control 6 can be regarded as the control that is
determined by the constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p
used in Chapter 6 have the following meaning in the case presently under consideration:

ul = [n,d]
v=mn
w=4§
m=2
p=1.
From (6.69) we find that the differential operator % takes the following form
LN NUAN
dn On 06\ 06 on
Iy . 4
On  85(T — D+ Dmaz) &
9 652 9

9n T T— D+ Doy 6
and from (6.68) we find for all states y € {E, h,~,z}

RN TR N AR
dy Oy 06\ 06 Jdy
9 B

53/—-’- (T_D+Dma:v)'%
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Explicitly, this implies

dH oH §%2 OH
—_— = —+___________
dn On T —D+ Dy, 86
oD v g
= Wt
6%—D v
+mAE(T_ D+Dma1)i—/v—

g
= M

and, by applying Definition 6.6.1, we find that control n is singular if and only if A, =0
and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

Ry € R®%° = non-existent
Q, € R®* = non-existent
By € R*% = non-existent

and
Q2 € RM

B, € R } = Q.B; € R = Q.B; = (Q2B2)7

so that condition i) of Theorem 6.6.2 is always satisfied. Furthermore

B; € R*!

Q? € RO = B2TQ1T € RO

Q; € R4 = R, € R%° non-existent
Bf cpto ( 7 QBe RV

dndE’ dndh’ dndy’ dndz
— [0,0,0,0]

d*H d’H d*H d*H
Q: =

dn’dn’dn’ dn

T
= [0,0,2,0]
v

. . . . T
B, = [dE dh d¥ dz]

so that

d AT
R; = B,"P B, - 7 (Q2B2) — (ABz - Bz) Q7

-~ n'an

=0 =0

2 / 2
= (%) [—/\E sin 7y (vm,;zv + ’v) — Apusiny — Agv COS'Y] .
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Hence

R; R;
= R3

2 ' 2
<2) [_,\Esjnﬂ/(v”‘%+v) —/\hvsin'y—/\xvcosv] .
v

In A.4.3 case 2, the condition R > 0 is always satisfied with strict equality (because of
Ar =0, cosy # 0, and (A.41)). In A.4.3 case 2, the condition R > 0 implies

2 12
(‘2) [—/\E sin v (M + v) — Apvsin 7}
v g

2 /
- (/\E (M + 1) + /\h) sin 7,
g

v

- [5¥]

fl

R

so that necessarily

+90° if Ag Eh;:ﬂﬂ +2, <0
TTY 2900 i A AL > 0.

Ul Y

._m;.:_ + 1
If Ag (E;H;LU + 1) + A = 0 then both, ¥ = +90°, and v = —90° are compatible with
the Generalized Legendre-Clebsch Condition. Explicit calculation shows that the latter

case is indeed possible as along arcs of control logic A.4.3 case 2 all derivatives of z :=
AE (Em;;;ﬁ + 1) + Ap are zero automatically if only z = 0 is satisfied at a single point.

In A.4.3 case 4, using (A.43) Ay, = Az tany — Ag (1 + E;x—“), condition K > 0 implies

2 o2
(%) [—/\E sin 7y (% + v) — Azvcosy+
'z
- ()\I tany — Ag (M + 1)) vsin'y]
g
2 ! 2
(%) [—/\E sin (% + v) — Azvcosy+

v v?
Azv siny tany + Ag | 25— + v | siny
g

R

2
- <2) Azv[cosy + siny tanv]
v

2
- (2) AgU L

v cosy
Hence, for —90° < v < +90° necessarily A, < 0. Together with the assumption A, # 0
this finally implies A, < 0.

Il
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‘Appendix B

Accessory Minimum Problem for
Extremals with Corners
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B.1 Introduction

In the following Section the Accessory Minimum Problem (AMP) is derived for optimal
control problems in presence of an interior point constraint. Along these calculations also
the first-order necessary conditions stated in Section 3.5 are obtained. For future research
it is planned to apply the preliminary results on the Jacobi Necessary Condition stated in
Chapter 8 to the AMP derived in this Chapter. The aim is to derive a Jacobi Necessary
Condition for optimal control problems with interior point constraints.

B.2 Derivation of the Acessory Minimum Problem (AMP)

Consider the non-linear optimal control problem
s
min ! ¢(z(ty),15) +/ L(z,u,t)dt
to

z= f(:c,u,t)

x(to) = T

(x(ts),ty) =0

N(z(t:*),z(t17),t1) = 0 (B.1)
to fixed

t; free

iy free.

Let * and ~ denote quantities associated with a reference solution and an associated
perturbed solution, respectively. Furthermore let J denote the augmented cost function

o= plz(ty), ty)+
+rTy(z(ty), t5)+
+u N(z(ti+),a(ti7), 1)+
+ [ L+ AT(f = &) dt+ ! L+ AT(f - &) dt

(B.2)

and define
U(z(ty),tr,v) := d(a(ty), tg) + v p(2(ty), ts)
H(z,u, A1) = L(z,u,t) + AT f(z,u,1)

M(z(t1*),2(ti7), t1, 1) = pT N (2(t1F), 2(t17), ).

In the following we give an expansion of J — J* about the reference solution *. Then we
state necessary conditions that have to hold along the reference solution in order that all
first order terms in the expansion of J — J* (the “first variation”) be zero. Finally the
problem of minimizing the remaining second order terms is identified as a linear quadratic
optimal control problem.

Throughout this Section the following nomenclature is valid:
superscript + denotes evaluation at time #;**
superscript — denotes evaluation at time ¢; ~*
subscript 0 denotes evaluation at time #,
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subscript f denotes evaluation at time ¢;*
other subscripts denote partial derivatives.
Let

dz(t) = z(t)—=x*(t)
su(t) = u(t)—u(t)
ty, = ti— ()"
6ty = ty— ()",
then we have
T—J" = Wudzs+ Vidt; + (Mg +doyt + My -dzy™ + Midty) +
t t
v [ H bz + Hobu— AT6sdi+ [ Hobz + Hybu— A6 dt +

to [3]
1 ‘I’rx ‘I’zt dl‘f
+2[d1‘f,dtf][ ¥, Uy ] [ dt; ] +
le+z1+ M-’Ul*rl_ M1‘1+t dzy”

1 -
+§[dl‘1+,d.’£1 ,dtl] Mxl_x1+ M:vl‘:c]_ Mz,_t d£131+ +
M, + M, - My, dt;

1 f1 H:L':L' Hru oz
+5 A [0z, 6u] [ H. H. ] [M] dt +

1 [t Hyy Hyy bz
+5 A [0z, 6u] { H,. H,, ] [6u dt +
+03.
Now use
t1 - t1
/ “Msedt = - (Méz)|" + [ ATozde
to to to
ty .
= —(\Téz)™ +(ATax)o+/ ' 3T6z dt
= —/\—T (dfl)l_ — 7 dt; — %—dtlz - 6i_dt1> + 03 +
t1 .
+ [ ATézdt
to
and similarly
t T
/ " \Tesdr = - (Weg)|! 4+ [ ATezar
ty tt ty

- (/\Téz)f + (/\Téx)+ v [ 3Tse at

ty
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= —/\fT (d:rf — i‘fdtf — %dt!) — 6:ijdtf) +
T . it 2 . 3
—/\+ d.’L‘1+ - $+dt1 - —2—dt1 - 5I+dt1 + O +
tf .
+ [ " M6z dt.

31

Then

~

—J° = Vudry+ Vdty + (M, +dzyt + M, -dzy™ + My, dty) +

. ty .
H, + AT) bz + H budt + (HI n ,\T) 6z + H,budt +

131
to iy

+f
—/\fT (da:f —:&fdtf — :I;—fdth —5i:fdtf) +

u+
a7 (dz1+ —gtdt, — %dt,z - 6:1':+dt1) +

AT (dx; — & dty — %dt,2 _ 6:i:"dt1) +

1 ‘I,Z.‘L‘ ‘I’:L't dz_f
+§[dl‘f,dtf][ v, U, ] [ dtf +
1 + B jufl'*ﬂb'l+ M11+Il— MI1+t1 dzy~
+§[dl’1 ,dry ,dtl] le—xl+ M-"«'l_l‘l_ Ml'l_tl dl‘1+ +
My o+ M, . - M, dt,
1 b H.,, H, bz
+5 . [6z, bu] [ H. H. ] [6u] di +
1 rt Hep Hpy oz
+§ . [6z, éu] [ He Ho ] [6u] dt +
+0°.
Rearranging yields
T=J = (Vo= AT) deg+ (U, + Hy)diy +

+ (Myye +247) dzy* +

+ (Mﬁ_ - A‘T) dz,™ +

+(M¢1 —H++H—)dt1+
)

+ [ (He+ A7) bz + (Hy)budt +

to

ty T
+/ (He + 37 b2 + (H,) bu dt +

ty
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AT (fzidtﬁ + 5’xfdtf) +

.-+ .
a7 (‘%dtl? + 6x+dt1) +
AT (z—2—dt12 ¥ 5’z'dt1) +
}_ Vor Wa dxf
+2[dx,,dtf][ v, U, ] [ Iy +
Mg, +q+ Mg 42, -

1 -
+§[dz1+,da:1 ,dt1] Mx;‘:t;"‘ Ml’l'—1'1"
Mt1.131+ Mt;:z:l"

1 [ Hyy Hgzy bz
+§_/t‘0 [6z,6u] [ H.. Huu] {&L] di +

I Hyy Hpo oz
+§ \ [6z,6u] [ .. HW} [6u} dt +

+03.
Now set
H, + i =0
H, =0
R
qh +'}If =0

le+t1
M, -,
Mtltl

dz,~
d$1+
dty

(87 Nyt + xT) dot + (67 Nz, - - AT do + (TN - H* + H™) dty = 0.

(B.3)

These conditions eliminate all first order terms in J—J*. We wish to express the remaining
second order expression for J — J* completely in terms of éz rather than dz. As all dz-
terms appear at least quadratically it is clear that J — J* remains correct up to second

order if we make the first order approximations

d:l:f = 6xf+:i:fdtf+(’)2
det = 6zt +ztdt + O?
de= = &z~ +z dt; + O

Then we get

J-J = +/\fT (%dth + 6i:fdtf> +
-

T (z—2—dt12 + 6a’:+dt1) +

+A-T (%-dtﬁ +éidty ) +
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+1(5:L‘f+i‘fdtf T V., ¥, 5Zf+:i:fdtf n
2 dtf U, Wy dtf

+ = bz~ + J.I_dtl M.r]‘z:1+ M:z:) -zy- M-’L‘l_tl Sz~ + i»*dtl +
dtl Mtlzl+ Mtxl‘l_ Mtltl dtl

. T .
[ 6z* + itat, { Myvot Mpvg - M4y, szt + itdyy
H

1 H,, H,, bz
+§ A [z, bu] [ H,. H. } [6u] dt +
1 rts H.,, H,, bz

+§ A [z, 6u] [ H.. H.. J [6u} dt +
+0°.

The terms /\Tg and ATé%, can be written as follows:

¢ _ d 73\ (73
/\Q—dt('\2) ’\2
_ ldA  1:p
2dt 2

ATs: = %(ATax)—;\Taz

= Méz 4+ 2T63 — \Téz
= —Hbz+ M f60+ \Tf,6u-7T 6z
- "——‘

=0 =0
= —;\Téa:.
Hence
— [ /dH : ;
T +% (idt_)f_)\§¢,}dt,2—,\f6z,dtf+
r + .
(&) - “T’”} dt? + N+ satdry +
1{/dH\~ . :
L1 (d_f:) _ ,\—Ti‘J dty? = \-Tézdt, +

L baptapdty 17 [ Wow o 1] b2 + 30ty s
2 dtf q’tz‘ 'I’“ dtf

. T .
[ 62+ + 3ty Mojtoiv Mpjvg - My, ][ 62% +3%de,
+5 | 627 +37dty My -+ My—gio My -y || 62~ +2-dt; | +
| dy Myz+v My, - M, dty

1 H., H,, bz
+§/t0 [z, 6u] [ Ho. H. J [611} dt +
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| H.
+-2- A [z, 8u) [ H.,

+O3.

T
5xf+¢fdt,} [\Ifm U,

dtf ¥z

Hzo
Hyu

\I’tt

J[5] e

\T - 2 \T

61:f+i:fdtf
dtf

1[/dH . .
LY —ATi, | dt? - A6z ,dt
2[( dt)f fxf] tf joxf f+

T
+l 6mf+d:fdtf \Iluézf-i-d—;{“dtf
dt; U6z + ltdiy

(— — /\T:L‘f] dt_f2 - ;\}wéxfdtf +

2
d¥, dv,
+% [(6zf + i’fdtf) (‘I!m&xf + -E—dtf) + dity ('Iltz&cf + — 7 dtf)]
l (——) - /'\T:I‘:f dtf2 — /'\Tézfdtf +
2 t /) I s
1
2

d¥,

[6::: T bz + 7 Uopbzpdty + 82 fT—d—t—dt 5+
T

Ty

Yz dtj +‘I’t35xfdtf+ d;; dtj]

1 d T T
5 [( t)f— Af:l)f] dtf2 — Afémfdtf +

1 T dv . Td‘I»’ dv 2]
+§ [51‘; U 0z +2 7 6xfdtf+(:cf 7 +-d—t> dts

1
§5$fT‘IJ,;$6$f +

dV¥ . .
+( T, ) 6Zfdtj+
1 /dH T. Td‘I/ d‘I‘) 2
+2(dt —/\ T+ T + a jdtf
Vor

(62, dty] . (5 - 4), [5%]
2 (%ﬂ—z\)i (‘m /\T:v+xTﬂ‘+d—w)f dty
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and similarly

+ ] i
_1 ((ﬂ) = ATit dy? + AT sa+de, +
2 |\ dt ]
+% (‘%—) — ,'\-TgrJ dty? — A Tézdt,+
- . T r .
L[ = +dtay My oy Mpio Mg, [ 6z +3%dy
+5 bz~ + 2~ dt, Mo oy Me o M _, 8z~ + i—dty
dt; M, My, _ My dt,
L L 1+ 1

+ ] .
- 1 ((‘z_f) =Mt dy? 4 AT sa%de, +

L[dEN 2 T
+§ _(W) —-A'z ‘dtl - A bz dt; +

(6£E++:f:+dt1 ! I- Ma:l.'.x +6-77 +M1+x1 bz~ +—J—+ dty

1 el Mz
t5 | 627 +iTdy Moo 62t + M,y o bo= + “oa= gy,
| dh | M 6ot + My, 62 +Mtdzl
d + . ] .
- 1 [(TH) = AT i+ a4+ AT sz+de, +
2 [\dt |
1 d - . .

L1 dM
[6:c+TMII+II+ S + 6T M, . bc™ + 62*T —hdt+

aM
+3 My oy 62t dty + 67TM, . 62 dty + #T—1td® +

+6z T M Szt + 62T M Sz~ + 5:c-TdM’”1' dt; +
T -7 ¢ T—zy— dt 1

7dMz _
+37 M, oy, Setdt + 57T M, Somdty 4 57T —dh® +

d
+Mi,  bztdt; + M, _6z7dt;, + —dﬂﬁdtl ]

1 [ + . .
- _Z (‘Z_I:) - ,\+T¢+J dty? + A Tsztd, +

r -
d . .
+= (d—f) - /\*Ti:‘} dty? — A" T6z=dt, +

[
+5 |8eM T Meyy 0 62t + 62T,

1-

dM,
ér” + ‘ZT”(S.?:*"dtl-f-

M dM, dM,
+2 d;c" fxdty + 262t M, az 0T+ (i+TTt” +3 T 5= 7 =+ +d—dA?) dt12}
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dt dt

dM. d
+i T —= + —M—‘) dt,® +

RETEOREE
o dMa
—A + __T{L
+ +
- ()|t
x . dM. _
+&tT dt+ +a77 dt +%‘ -
(B.5)
avy _
( dt ’\)f bz } +
Wi+ a4+ 47) | L4
bx
bu dt+
bx
Su di+

1 1
= §5m+TM,,l+zl+6a:+ + 561'_TMI1_$1_6$" +
1 dH + \7T - + .+Tsz‘1+
+§(——d‘t—_+(/\ :L‘)l_-i':v —
1
+258% T My 5, 627 +
1. dM
- +T e b +
+22(/\ + 7 )6m dty +
1 \-T del‘ -
+2§ (—/\ +——at—— oz dtl
1 bzt T bzt
= +§ bz~ c| éz" |,
dty dty
where
Mx1+1:1+ Al:c“.xl_
C = Mxl_:z:1+ Mz'l..xl_
. dM . T dM:rl_
(+)‘+T+ dt+) (_’\ T+ dt )
Hence
— - 1 ‘I;.Z':L'
dt f dt
H.I‘.’If H.’L‘u
+5 ooz, 6ul | g
t Hyy Hy.
t3 fl By Do,
sz+ 17 [ 6at
+% éz~ C| bz~
dty dty
+03.

(B.6)

In the expressions above all quantities éz, éu, 6z, 6zq4, 6z1-, diy, diy denote the differ-
ence between quantities associated with the reference solution and quantities associated

147



with the perturbed solution, i.e.

6z(t) =7z(t) — z*(t)
du(t) =7u(t) — u*(2)

bzy  =7(ts7) —z*(t5%)

bz =T(ti™T)-z*(t,™") (B.7)
6$+ = T(t1+*) - $*(t1+‘)

dty =1t -t

di, =1 — 1"

All other terms appearing in (B.6) are evaluated along the reference solution * and hence
are either fixed numbers or fixed functions of time. As the right-hand side of (B.6)is a
quadratic form in the quantities (B.7) it is clear that (B.6) remains correct in the leading
(second order) term if we replace the quantities (B.7) by any first order approximation.
Hence it suffices to determine the quantities 6z, éu, bzy, 6214, 621-, dty, dt; from the
linear conditions

6 = fzbz + fubu on [to, 1~ U [th*", /]

¥, (61‘f+i‘dtf)+‘pgdtf =0 (BS)
Ng,_ (627 + &7dty) + N, (6z + @%dty) + Nedty = 0.

Note that quantities evaluated along the reference solution may change discontinuously
across the switching point ¢;.

Now the problem

min J — J*

with J — J* given by (B.4), (B.6), subject to the linear constraints (B.8) constitutes
a linear quadratic optimal control problem, the so-called Accessory Minimum Problem
(AMP) associated with the non-linear optimal control problem (B.1). By construction it
is clear that

(i) If there is a solution to the AMP that furnishes negative cost then the reference
solution * cannot furnish a local minimum to (B.1). Then in any neighbourhood of the
reference solution * a competitive solution to (B.1) can be found that furnishes a cost
better than the cost associated with reference solution *.

(i) If all non-trivial solutions to the AMP furnish cost greater than zero then reference
solution * furnishes at least a weak local minimum to problem (B.1).
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